[机器学习][逻辑回归] 有监督学习之逻辑回归
线性回归方法一般只做回归分析,预测连续值等,而我们的任务是分类任务时该怎么办呢?下面我们讲一下最基本的分类方法,也就是逻辑回归方法(Logit regression)。逻辑回归又称为对数几率回归,它将线性回归的输出又进行了一个特殊的函数,使其输出一个代表分类可能性的概率值,这个特殊的函数称作sigmoid函数,如下式所示: 该函数的函数图像如下图所示: 图6 sigmoid函数 Sigmoid函数在机器学习乃至深度学习中占有很重要的地位,因为它具有以下几个良好性质: 单调可微,具有对称性 便于求导,sigmoid函数的导数满足: 定义域为 ,值域为 ,可以将任意值映射到一个概率上 将现行回归的输出值通过sigmoid函数,可以得到: 将上式稍作变形,可以得到: 可以看出,逻辑回归实际上就是用线性回归拟合 函数,但为什么逻辑回归能用于分类问题呢?由sigmoid函数的性质,我们可以做出假设:预测标签为第一类的数据概率为 , 预测为第二类的概率为 。 即 : 现在预测的概率知道了,我们可以通过极大似然估计(Maximum Likelihood Estimate, MLE)来估计参数 ,使得每个样本的预测值属于其真实标签值的概率最大。这时,极大似然函数也是我们的损失函数: 其中, 为所有待优化参数, 为关于参数 和样本特征 的sigmoid函数, 为样本数目。 为了直观展示逻辑回归的功能