机器学习-数学基础
常见函数 常函数: 一次函数: 二次函数: 幂函数: 指数函数: ,a的取值范围为: a>0&a≠1 对数函数: , a的取值范围为: a>0&a≠1 对数的运算 指数的运算 导数 一个函数在某一点的导数描述了这个函数在这一点附近的变化率,也可以认为是函数在某一点的导数就是该函数所代表的曲线在这一点的切线斜率。导数值越大,表示函数在该点处的变化越大。 定义:当函数y=f(x)在自变量x=x0上产生一个增量Δx时,函数输出值的增量Δy和自变量增量Δx之间的比值在Δx趋近与0的时候存在极限值a,那么a即为函数在x0处的导数值。 常见的导函数 偏导数 在一个多变量的函数中,偏导数就是关于其中一个变量的导数而保持其它变量恒定不变。假定二元函数z=f(x,y),点(x0,y0)是其定义域内的一个点,将y固定在y0上,而x在x0上增量Δx,相应的函数z有增量Δz=f(x0+Δx, y0) - f(x0,y0);Δz和Δx的比值当Δx的值趋近于0的时候,如果极限存在,那么此极限值称为函数z=f(x,y)在处对x的偏导数(partial derivative) z=x2+xy2 在(2,1)处的对x的偏导数=? 梯度 梯度:梯度是一个向量,表示某一函数在该点处的方向导数沿着该方向取的最大值,即函数在该点处沿着该方向变化最快,变化率最大(即该梯度向量的模) 泰勒公式 Taylor(泰勒