多模态机器学习,在线教育退课预测新进展!
点击上方 “ 小白学视觉 ”,选择加" 星标 "或“ 置顶 ” 重磅干货,第一时间送达 在线教育场景下的学生退课行为预测,一直是机器学习(ML)与教育(EDU)交叉领域内较为火热的研究课题。 近年间,针对该方向的研究对象大多集中为大规模开放性在线课程(Massive Open Online Course, MOOC)的学生,通过收集 MOOC 平台上学生近期平台登录记录与相关网页埋点反馈数据,研究人员制作相关特征向量并结合机器学习模型算法,如Simple Logistic Regression、Gradient BoostingDecision Tree、Iterative Logistic Regression 等,对存在退课高风险的学生进行预测。 不同于针对MOOC平台学生的预测,当前研究领域对 K12 在线教育平台的学生退课预测还处于初期探索阶段。除此之外,在线 K12 教育平台的数据类型与 MOOC 平台数据相比存在更多模态,例如 K12 教育平台的学生在课前课后与平台顾问直接会产生沟通记录、课程进行过程中也会有相应的音视频记录等。因此,先前关于 MOOC平台的退课预测研究的方法与结论很难直接用于 K12 在线教育场景。 针对这些问题与特点,在2019年初,我们使用某K12在线教育1对1平台2018年秋冬季学期的学生历史行为数据