股票交易——单调队列优化DP
题目描述 思路 蒟蒻还是太弱了,,就想到半个方程就GG了,至于什么单调队列就更想不到了。 $f[i][j]$表示第$i天有j$张股票的最大收益。 那么有四种选择: 不买股票:$f[i][j]=max(f[i][j],f[i-1][j])$ 买$j$张股票,之前没有买:$f[i][j]=-j*ap[i]$ 买$j$张股票,之前有过交易,中间间隔了$w$天:$f[i][j]=max(f[i][j],f[i-w-1][k]-(j-k)*ap[i])$ 卖$j$张股票,之前有过交易(废话),中间间隔了$w$天,$f[i][j]=max(f[i][j],f[i-w-1][k]+(k-j)*bp[i])$ 方程列出来了,还是很好理解的。那么怎么优化呢?我们发现$i,j,k$都要枚举$O(n^3)$的复杂度是会$T$的,我们需要用一些优化。 我们发现:3转移中$f[i-w-1][k]-(j-k)*ap[i]=f[i-w-1][k]+k*ap[i]-j*ap[i]$,这样我们在第i天时只要找出最大的$f[i-w-1][k]+k*ap[i]$即可,因为前两维$i,j$已知,$j*ap[i]$是常数。 用一个递减的单调队列维护使$f[i-w-1][k]+k*ap[i]$最大的$k$,每次取队首转移即可,注意如果$as[i]<j-k$(即买不了这么多股票)时,需要把队首弹出。