三极管

漏极开路

南笙酒味 提交于 2020-02-26 09:09:48
漏极开路是驱动电路的输出三极管的集电极开路,可以通过外接的上拉电阻提高驱动能力。 这种输出用的是一个场效应三极管或金属氧化物管(MOS),这个管子的栅极和输出连接,源极接公共端,漏极悬空(开路)什么也没有接,因此使用时需要接一个适当阻值的电阻到电源,才能使这个管子正常工作,这个电阻就叫上拉电阻。 漏极开路输出,一般情况下都需要外接上拉电阻,以使电路输出呈现三态之高阻态,例如,在有些芯片的引脚就定义为漏极开路输出;还有一些带漏极开路输出的反向器等都需要外接上拉电阻才能正常工作。 三极管(共射极)在数字电路中用到它的截止区和饱和区,因为在数字电路中输入信号是大幅度的脉冲信号,当输入为低时,三极管工作在截止区,输出Vce为高。当输入为高时,三极管工作在饱和区,输出Vce为低。 A:我们先来说说集电极开路输出的结构。集电极开路输出的结构如图1所示,右边的那个三极管集电极什么都不接,所以叫做集电极开路(左边的三极管为反相之用,使输入为“0”时,输出也为“0”)。对于图1,当左端的输入为“0”时,前面的三极管截止(即集电极C跟发射极E之间相当于断开),所以5V电源通过1K电阻加到右边的三极管上,右边的三极管导通(即相当于一个开关闭合);当左端的输入为“1”时,前面的三极管导通,而后面的三极管截止(相当于开关断开)。 我们将图1简化成图2的样子。图2中的开关受软件控制,“1”时断开,“0”时闭合

模电基础-3:F007

≡放荡痞女 提交于 2020-02-23 11:48:40
1.电流源 镜像电流源:Q1与Q2处于同一静工作点输出电流相同 比例电流源:Q3与Q4输出电流之比等于R6比上R5,即与两电阻阻值成反比 微电流源:当比例电流源其中一个电阻阻值为0时,另一个三极管Q6的电流远小于Q5 在镜像电流源中为两个三极管提供静态工作点的是R1,因而R1上包含了Q1电流及两个三极管基极电流,这里为了减小上图中R12中流过的电流,Q7Q8静态工作点由三极管Q9来提供 可参照镜像电流源来理解,三极管由NPN型换成了PNP型 2.F007内部电路 各部分标注如下图,为便于仿真验证,这里将运放接成反向放大器结构 仿真结果如下: 输入信号为:幅度2V,直流偏移1V 仿真工程:https://download.csdn.net/download/faldercs/12141045 来源: CSDN 作者: faldercs 链接: https://blog.csdn.net/faldercs/article/details/104206282

三极管典型开关电路

筅森魡賤 提交于 2020-02-20 07:59:58
1.基极必须串接电阻,保护基极,保护CPU的IO口。 2.基极根据PNP或者NPN管子加上拉电阻或者下拉电阻。 3.集电极电阻阻值根据驱动电流实际情况调整。同样基极电阻也可以根据实际情况调整。 基极和发射极需要串接电阻,该电阻的作用是在输入呈高阻态时使晶体管可靠截止,极小值是在前级驱动使晶体管饱和时与基极限流电阻分压后能够满足晶体管的临界饱和, 实际选择时会大大高于这个极小值, 通常外接干扰越小、负载越重准许的阻值就越大,通常采用10K量级。 防止三极管受噪声信号的影响而产生误动作,使晶体管截止更可靠! 三极管的基极不能出现悬空,当输入信号不确定时(如输入信号为高阻态时),加下拉电阻,就能使有效接地。 特别是GPIO连接此基极的时候,一般在GPIO所在IC刚刚上电初始化的时候,此GPIO的内部也处于一种上电状态,很不稳定,容易产生噪声,引起误动作!加此电阻,可消除此 影响(如果出现一尖脉冲电平,由于时间比较短,所以这个电压很容易被电阻拉低;如果高电平的时间比较长,那就不能拉低了,也就是正常高电平时没有影响)! 但是电阻不能过小,影响泄漏电流!(过小则会有较大的电流由电阻流入地) 当三极管开关作用时,ON和OFF时间越短越好,为了防止在OFF时,因晶体管中的残留电荷引起的时间滞后,在B,E之间加一个R起到放电作用。 来源: https://www.cnblogs.com

一个典型的晶体管开关电路

℡╲_俬逩灬. 提交于 2020-02-20 01:26:36
1.基极必须串接电阻,保护基极。保护CPU的IO口。 2.基极依据PNP或者NPN管子加上拉电阻或者下拉电阻。 3.集电极电阻阻值依据驱动电流实际情况调整。相同基极电阻也能够依据实际情况调整。 基极和发射极须要串接电阻,该电阻的作用是在输入呈高阻态时使晶体管可靠截止。极小值是在前级驱动使晶体管饱和时与基极限流电阻分压后可以满足晶体管的临界饱和,实际选择时会大大高于这个极小值。通常外接干扰越小、负载越重准许的阻值就越大。通常採用10K量级。 防止三极管受噪声信号的影响而产生误动作,使晶体管截止更可靠!三极管的基极不能出现悬空,当输入信号不确定时(如输入信号为高阻态时)。加下拉电阻。就能使有效接地。 特别是GPIO连接此基极的时候。一般在GPIO所在IC刚刚上电初始化的时候,此GPIO的内部也处于一种上电状态,非常不稳定,easy产生噪声,引起误动作!加此电阻,可消除此影响(假设出现一尖脉冲电平,因为时间比較短,所以这个电压非常easy被电阻拉低;假设高电平的时间比較长。那就不能拉低了,也就是正常高电平时没有影响)。 可是电阻不能过小。影响泄漏电流!(过小则会有较大的电流由电阻流入地) 当三极管开关作用时,ON和OFF时间越短越好,为了防止在OFF时,因晶体管中的残留电荷引起的时间滞后,在B,E之间加一个R起到放电作用。 来源: https://www.cnblogs.com

张飞硬件开发视频第五部电路详细讲解,纯硬件也可以做PWM波

*爱你&永不变心* 提交于 2020-02-04 07:37:26
学习了张飞老师的硬件开发视频,把这一部的电路拿出来写一下。 项目的目的我就不写了,主要写一下硬件电路。分析一下这一个电路是怎么样工作的。 首先是电源部分,左边是用了一个三极管和一个稳压管搭建的稳压电源电路,15V的电源通过电阻R1到三极管的B极,稳压管的电压在5V6,然后经过三极管的PM结降压为5V输出。右边是一个跟随放大器。理想的电压跟随器应具有输入阻抗趋于无穷大、输出阻抗为0和正向电压传输系数Av=1三个基本特征,跟随器是一种电子线路,其输出信号基本等同于输入信号,但提高了带负载能力,广泛存在于各类电子线路中。电阻R3和R4用来调节输入跟随器的电压值,输出相同的电压值,跟随器输出一个5V6的电压,导通三极管Q2,通过PM结得到一个比较稳定的5V电压。J1是跳线帽的排针,实际电路的调试就通过一个跳线帽连接起来,就可以用一个电阻器调整输入电压。 接下来就是主体电路部分了。 从左边开始看,5PIN的排针是传感器的接触点,不用理会。 传感器的2号脚输入一个小电压的信号,U1B是一个同相放大器,把小电压放大。放大倍数为(1+R22/R15),TR3还是作为实际调节电阻,可以调整放大倍数。 放大后的电压经过电阻进入两个比较器的负相输入端。R16,17,18三个电阻通过分压作为比较器的比较值。D6稳压管和电容C7作为滤波作用,提供了一个比较稳定的电压,让电压值波动小,稳定

第一个晶体管是如何工作的?

家住魔仙堡 提交于 2020-02-02 02:43:19
就是世界上第一个晶体管设计模型,看起来它好像并不能够改变世界,但它的确做到了。这是一个放大了很多倍的复制品,它很大程度上完美代表原型原理。在1947年,贝尔实验的Walter H. Brattain第一个开发制作了这个装置。在一个塑料支架上,放置了一个铜块,上面又安装了一大块半导体锗(Germanium)。 在锗块上面又放置了一个塑料三角形。在三角形的两个斜边各粘贴了一层金箔。 上面有一个金属弹簧,向下将三角形压在半导体锗块上面,在其顶端与锗表面形成了一个点接触,这就形成了一个点接触三极管。 这就是Brattain和Bardeen在1947年12月份发明的点接触三极管装置。 他们在三极管的左边接入一个麦克风,在右边回路接入一个音箱。他们对着麦克风说话,可以观察到音箱中出现被放大了的声音。 Brattain在实验室的工作笔记中写道:这个电路将声音进行了放大,可以在示波器上被观察到,也可以被听到。 放大功能是晶体三极管的主要功能。比如我们的手机,它接收到来自附近手机信号发送接收基站的微弱信号,手机中的电路将信号放大解调后,形成可以收听的声音。 这个晶体三极管究竟是如何完成这神奇的功能的呢?其中关键之处在于塑料三角形与锗块接触的这一小的区域。 在这个区域内集成了三种不同的导电物质。我们按照物质的导电性能将物质分成了三大类:导体、绝缘体和半导体。 第一类是导体,比如像金属

STM32学习系列之GPIO的八种工作模式

冷暖自知 提交于 2020-01-12 23:55:12
一、推挽输出:可以输出高、低电平,连接数字器件;推挽结构一般是指两个三极管分别受两个互补信号的控制,总是在一个三极管导通的时候另一个截止。高低电平由IC的电源决定。 推挽电路是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小、效率高。输出既可以向负载灌电流,也可以从负载抽取电流。推拉式输出级既提高电路的负载能力,又提高开关速度。 二、开漏输出:输出端相当于三极管的集电极,要得到高电平状态需要上拉电阻才行。适合于做电流型的驱动,其吸收电流的能力相对强(一般20mA以内)。开漏形式的电路有以下几个特点: 1、利用外部电路的驱动能力,减少IC内部的驱动。当IC内部MOSFET导通时,驱动电流是从外部的VCC流经上拉电阻、MOSFET到GND。IC内部仅需很小的栅极驱动电流。 2、一般来说,开漏是用来连接不同电平的器件,匹配电平用的,因为开漏引脚不连接外部的上拉电阻时,只能输出低电平,如果需要同时具备输出高电平的功能,则需要接上拉电阻,很好的一个优点是通过改变上拉电源的电压,便可以改变传输电平。比如加上上拉电阻就可以提供TTL/CMOS电平输出等。(上拉电阻的阻值决定了逻辑电平转换的速度。阻值越大,速度越低功耗越小,所以负载电阻的选择要兼顾功耗和速度。) 3

说说M451例程讲解之LED

走远了吗. 提交于 2020-01-12 23:21:42
/**************************************************************************//** * @file main.c * @version V3.00 * $Revision: 3 $ * $Date: 15/09/02 10:03a $ * @brief Demonstrate how to set GPIO pin mode and use pin data input/output control. 演示如何设置GPIO引脚模式并使用引脚数据输入/输出控制。 * @note * Copyright (C) 2013~2015 Nuvoton Technology Corp. All rights reserved. * ******************************************************************************/ #include "stdio.h" #include "M451Series.h" #include "NuEdu-Basic01.h" #define PLL_CLOCK 72000000 void SYS_Init(void) { /*----------------------------------------------

三极管基本放大电路解析

六月ゝ 毕业季﹏ 提交于 2020-01-09 17:33:46
三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。 下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)

三极管工作原理

穿精又带淫゛_ 提交于 2020-01-09 17:32:25
三极管在我们数字电路和模拟电路中都有大量的应用,在我们开发板上也用了多个三极管。在我们板子上的 LED 小灯部分,就有这个三极管的应用了,下图 的 LED 电路中的 Q16就是一个 PNP 型的三极管。 三极管的初步认识 三极管是一种很常用的控制和驱动器件,常用的三极管根据材料分有硅管和锗管两种,原理相同,压降略有不同,硅管用的较普遍,而锗管应用较少,本课程就用硅管的参数来进行讲解。三极管有 2 种类型,分别是 PNP 型和 NPN 型。先来认识一下,如下图 三极管一共有 3 个极,从上图来看,横向左侧的引脚叫做基极(base),中间有一个箭头,一头连接基极,另外一头连接的是发射极 e(emitter),那剩下的一个引脚就是集电极 c(collector)了。这是必须要记住的内容,死记硬背即可,后边慢慢用的多了,每次死记硬背一次,多次以后就会深入脑海了。 三极管的原理 三极管有截止、放大、饱和三种工作状态。放大状态主要应用于模拟电路中,且用法和计算方法也比较复杂,我们暂时用不到。而数字电路主要使用的是三极管的开关特性,只用到了截止与饱和两种状态,所以我们也只来讲解这两种用法。三极管的类型和用法我给大家总结了一句口诀,大家要把这句口诀记牢了:箭头朝内 PNP,导通电压顺箭头过,电压导通,电流控制。 下面我们一句一句来解析口诀。三极管有 2 种类型,箭头朝内就是PNP