线性代数-MIT-第4讲
线性代数-MIT-第4讲 目录 线性代数-MIT-第4讲 1.矩阵AB的逆 2.消元矩阵的乘积 3.转置与置换 1.矩阵AB的逆 2.消元矩阵的乘积 最基础的矩阵分解A=LU: A通过消元矩阵得到上三角阵U,L联系这A和U; E21 A = U A=LU 左乘初等矩阵,将矩阵转化为上三角阵U; L是下三角阵,对角线为1,U是上三角阵,对角线为主元; 举例A为3x3,则消元成为上三角阵U(假设没有行交换): 此处为何转化成右侧的逆? 解释(以3x3举例): (E32为单位阵,E是A的左乘,(3,3)位置是10,不友好) (E32为单位阵,L是U的左乘,L是E的逆,(3,3)位置0,更友好) 因此,A=LU,如果没有行交换,则消元乘数可以直接写入L中; 消元的过程,需要多少次操作?例如nxn的矩阵A: 例如,100x100的矩阵; 第一步,第一行不变,使除第一行外第一列变为0,该过程除第一行其余均变化, 即是100x99,近似于100x100; 第二部,第一二行不变,使除第一二行外第二列变0,该过程除第一二行和和第一列变化, 即是99x98,近似于99x99 因此总的次数为,100x100+99x99+98x98...2x2+1x1,根据微积分可得 而右侧向量b,则需要1+2+3+...+n-1+n-2= 次; 3.转置与置换 下面讨论主元位置存在0的情况,即需要进行行交换(置换矩阵)