Convert RcppArmadillo vector to Rcpp vector

二次信任 提交于 2019-11-30 03:49:52

I was trying to Evaluate a Rcpp::Function with argument arma::vec, it seems that it takes the argument in three forms without compilation errors. That is, if f is a Rcpp::Function and a is a arma::vec, then

  1. f(a)
  2. f(wrap(a))
  3. f(as<NumericVector>(wrap(a)))
  4. f(NumericVector(a.begin(),a.end()))

produce no compilation and runtime errors, at least apparently.

For this reason, I have conducted a little test for the three versions of arguments. Since I suspect that somethings will go wrong in garbage collection, I test them again gctorture.

gctorture(on=FALSE)
Rcpp::sourceCpp(code = '
#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]

using namespace Rcpp;

// [[Rcpp::export]]
double foo1(arma::vec a, arma::vec b, Function f){
    double sum = 0.0;
    for(int i=0;i<100;i++){
        sum += as<double>(f(a, b));
    }
    return sum;
}

// [[Rcpp::export]]
double foo2(arma::vec a, arma::vec b, Function f){
    double sum = 0.0;
    for(int i=0;i<100;i++){
        sum += as<double>(f(wrap(a),wrap(b)));
    }
    return sum;
}

// [[Rcpp::export]]
double foo3(arma::vec a, arma::vec b, Function f){
    double sum = 0.0;
    for(int i=0;i<100;i++){
        sum += as<double>(f(as<NumericVector>(wrap(a)),as<NumericVector>(wrap(b))));
    }
    return sum;
}

// [[Rcpp::export]]
double foo4(arma::vec a, arma::vec b, Function f){
    double sum = 0.0;
    for(int i=0;i<100;i++){
        sum += as<double>(f(NumericVector(a.begin(),a.end()),NumericVector(b.begin(),b.end())));
    }
    return sum;
}
')
# note that when gctorture is on, the program will be very slow as it
# tries to perfrom GC for every allocation.
# gctorture(on=TRUE)
f = function(x,y) {
    mean(x) + mean(y)
}
# all three functions should return 700
foo1(c(1,2,3), c(4,5,6), f) # error
foo2(c(1,2,3), c(4,5,6), f) # wrong answer (occasionally)!
foo3(c(1,2,3), c(4,5,6), f) # correct answer
foo4(c(1,2,3), c(4,5,6), f) # correct answer

As a result, the first method produces an error, the second method produces a wrong answer and only the third conversion returns a correct answer.

> # all three functions should return 700
> foo1(c(1,2,3), c(4,5,6), f) # error
Error: invalid multibyte string at '<80><a1><e2>'
> foo2(c(1,2,3), c(4,5,6), f) # wrong answer (occasionally)!
[1] 712
> foo3(c(1,2,3), c(4,5,6), f) # correct answer
[1] 700
> foo4(c(1,2,3), c(4,5,6), f) # correct answer
[1] 700

Note that, if gctorture is set FALSE, then all three functions will return a correct result.

> foo1(c(1,2,3), c(4,5,6), f) # error
[1] 700
> foo2(c(1,2,3), c(4,5,6), f) # wrong answer (occasionally)!
[1] 700
> foo3(c(1,2,3), c(4,5,6), f) # correct answer
[1] 700
> foo4(c(1,2,3), c(4,5,6), f) # correct answer
[1] 700

It means that method 1 and method 2 are subjected to break when garbage is collected during runtime and we don't know when it happens. Thus, it is dangerous to not wrap the parameter properly.

Edit: as of 2017-12-05, all four conversions produce the correct result.

  1. f(a)
  2. f(wrap(a))
  3. f(as<NumericVector>(wrap(a)))
  4. f(NumericVector(a.begin(),a.end()))

and this is the benchmark

> microbenchmark(foo1(c(1,2,3), c(4,5,6), f), foo2(c(1,2,3), c(4,5,6), f), foo
3(c(1,2,3), c(4,5,6), f), foo4(c(1,2,3), c(4,5,6), f))
Unit: milliseconds
                            expr      min       lq     mean   median       uq
 foo1(c(1, 2, 3), c(4, 5, 6), f) 2.575459 2.694297 2.905398 2.734009 2.921552
 foo2(c(1, 2, 3), c(4, 5, 6), f) 2.574565 2.677380 2.880511 2.731615 2.847573
 foo3(c(1, 2, 3), c(4, 5, 6), f) 2.582574 2.701779 2.862598 2.753256 2.875745
 foo4(c(1, 2, 3), c(4, 5, 6), f) 2.378309 2.469361 2.675188 2.538140 2.695720
      max neval
 4.186352   100
 5.336418   100
 4.611379   100
 3.734019   100

And f(NumericVector(a.begin(),a.end())) is marginally faster than other methods.

This should works with arma::vec, arma::rowvec and arma::colvec:

template <typename T>
Rcpp::NumericVector arma2vec(const T& x) {
    return Rcpp::NumericVector(x.begin(), x.end());
}

I had the same question. I used wrap to do the conversion at the core of several layers of for loops and it was very slow. I think the wrap function is to blame for dragging the speed down so I wish to know if there is an elegant way to do this.

As for Raymond's question, you might want to try including the namespace like: Rcpp::as<Rcpp::NumericVector>(wrap(A)) instead or include a line using namespace Rcpp; at the beginning of your code.

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!