Counting 1 bits (population count) on large data using AVX-512 or AVX-2

好久不见. 提交于 2019-11-28 01:09:10

AVX-2

@HadiBreis' comment links to an article on fast population-count with SSSE3, by Wojciech Muła; the article links to this GitHub repository; and the repository has the following AVX-2 implementation. It's based on a vectorized lookup instruction, and using a 16-value lookup table for the bit counts of nibbles.

#   include <immintrin.h>
#   include <x86intrin.h>

std::uint64_t popcnt_AVX2_lookup(const uint8_t* data, const size_t n) {

    size_t i = 0;

    const __m256i lookup = _mm256_setr_epi8(
        /* 0 */ 0, /* 1 */ 1, /* 2 */ 1, /* 3 */ 2,
        /* 4 */ 1, /* 5 */ 2, /* 6 */ 2, /* 7 */ 3,
        /* 8 */ 1, /* 9 */ 2, /* a */ 2, /* b */ 3,
        /* c */ 2, /* d */ 3, /* e */ 3, /* f */ 4,

        /* 0 */ 0, /* 1 */ 1, /* 2 */ 1, /* 3 */ 2,
        /* 4 */ 1, /* 5 */ 2, /* 6 */ 2, /* 7 */ 3,
        /* 8 */ 1, /* 9 */ 2, /* a */ 2, /* b */ 3,
        /* c */ 2, /* d */ 3, /* e */ 3, /* f */ 4
    );

    const __m256i low_mask = _mm256_set1_epi8(0x0f);

    __m256i acc = _mm256_setzero_si256();

#define ITER { \
        const __m256i vec = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(data + i)); \
        const __m256i lo  = _mm256_and_si256(vec, low_mask); \
        const __m256i hi  = _mm256_and_si256(_mm256_srli_epi16(vec, 4), low_mask); \
        const __m256i popcnt1 = _mm256_shuffle_epi8(lookup, lo); \
        const __m256i popcnt2 = _mm256_shuffle_epi8(lookup, hi); \
        local = _mm256_add_epi8(local, popcnt1); \
        local = _mm256_add_epi8(local, popcnt2); \
        i += 32; \
    }

    while (i + 8*32 <= n) {
        __m256i local = _mm256_setzero_si256();
        ITER ITER ITER ITER
        ITER ITER ITER ITER
        acc = _mm256_add_epi64(acc, _mm256_sad_epu8(local, _mm256_setzero_si256()));
    }

    __m256i local = _mm256_setzero_si256();

    while (i + 32 <= n) {
        ITER;
    }

    acc = _mm256_add_epi64(acc, _mm256_sad_epu8(local, _mm256_setzero_si256()));

#undef ITER

    uint64_t result = 0;

    result += static_cast<uint64_t>(_mm256_extract_epi64(acc, 0));
    result += static_cast<uint64_t>(_mm256_extract_epi64(acc, 1));
    result += static_cast<uint64_t>(_mm256_extract_epi64(acc, 2));
    result += static_cast<uint64_t>(_mm256_extract_epi64(acc, 3));

    for (/**/; i < n; i++) {
        result += lookup8bit[data[i]];
    }

    return result;
}

AVX-512

The same repository also has a VPOPCNT-based AVX-512 implementation:

#   include <immintrin.h>
#   include <x86intrin.h>

uint64_t avx512_vpopcnt(const uint8_t* data, const size_t size) {

    const size_t chunks = size / 64;

    uint8_t* ptr = const_cast<uint8_t*>(data);
    const uint8_t* end = ptr + size;

    // count using AVX512 registers
    __m512i accumulator = _mm512_setzero_si512();
    for (size_t i=0; i < chunks; i++, ptr += 64) {

        // Note: a short chain of dependencies, likely unrolling will be needed.
        const __m512i v = _mm512_loadu_si512((const __m512i*)ptr);
        const __m512i p = _mm512_popcnt_epi64(v);

        accumulator = _mm512_add_epi64(accumulator, p);
    }

    // horizontal sum of a register
    uint64_t tmp[8] __attribute__((aligned(64)));
    _mm512_store_si512((__m512i*)tmp, accumulator);

    uint64_t total = 0;
    for (size_t i=0; i < 8; i++) {
        total += tmp[i];
    }

    // popcount the tail
    while (ptr + 8 < end) {
        total += _mm_popcnt_u64(*reinterpret_cast<const uint64_t*>(ptr));
        ptr += 8;
    }

    while (ptr < end) {
        total += lookup8bit[*ptr++];
    }

    return total;
}

The lookup8bit is a popcnt lookup table for bytes rather than bits, and is defined here. edit: As commenters note, using an 8-bit lookup table at the end is not a very good idea and can be improved on.

Wojciech Muła's big-array popcnt functions look optimal except for the scalar cleanup loops. (See @einpoklum's answer for details on the main loops).

A 256-entry LUT you use only a couple times at the end is likely to cache-miss, and isn't optimal for more than 1 byte even if cache was hot. I believe all AVX2 CPUs have hardware popcnt, and we can easily isolate the last up-to-8 bytes that haven't been counted yet to set us up for a single popcnt.

As usual with SIMD algorithms, it often works well to do a full-width load that ends at the last byte of the buffer. But unlike with a vector register, variable-count shifts of the full integer register are cheap (especially with BMI2). Popcnt doesn't care where the bits are, so we can just use a shift instead of needing to construct an AND mask or whatever.

// untested
// ptr points at the first byte that hasn't been counted yet
uint64_t final_bytes = reinterpret_cast<const uint64_t*>(end)[-1] >> (8*(end-ptr));
total += _mm_popcnt_u64( final_bytes );
// Careful, this could read outside a small buffer.

Or even better, use more sophisticated logic to avoid page-crossing. This can avoid page-crossing for a 6-byte buffer at the start of a page, for example.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!