问题
I am trying to sample around 1000 points from a 3-D ellipsoid, uniformly. Is there some way to code it such that we can get points starting from the equation of the ellipsoid?
I want points on the surface of the ellipsoid.
回答1:
Here is a generic function to pick a random point on a surface of a sphere, spheroid or any triaxial ellipsoid with a, b and c parameters. Note that generating angles directly will not provide uniform distribution and will cause excessive population of points along z direction. Instead, phi is obtained as an inverse of randomly generated cos(phi).
import numpy as np
def random_point_ellipsoid(a,b,c):
u = np.random.rand()
v = np.random.rand()
theta = u * 2.0 * np.pi
phi = np.arccos(2.0 * v - 1.0)
sinTheta = np.sin(theta);
cosTheta = np.cos(theta);
sinPhi = np.sin(phi);
cosPhi = np.cos(phi);
rx = a * sinPhi * cosTheta;
ry = b * sinPhi * sinTheta;
rz = c * cosPhi;
return rx, ry, rz
This function is adopted from this post: https://karthikkaranth.me/blog/generating-random-points-in-a-sphere/
回答2:
Consider using Monte-Carlo simulation: generate a random 3D point; check if the point is inside the ellipsoid; if it is, keep it. Repeat until you get 1,000 points.
P.S. Since the OP changed their question, this answer is no longer valid.
回答3:
J.F. Williamson, "Random selection of points distributed on curved surfaces", Physics in Medicine & Biology 32(10), 1987, describes a general method of choosing a uniformly random point on a parametric surface. It is an acceptance/rejection method that accepts or rejects each candidate point depending on its stretch factor (norm-of-gradient). To use this method for a parametric surface, several things have to be known about the surface, namely—
x(u, v),y(u, v)andz(u, v), which are functions that generate 3-dimensional coordinates from two dimensional coordinatesuandv,The ranges of
uandv,g(point), the norm of the gradient ("stretch factor") at each point on the surface, andgmax, the maximum value ofgfor the entire surface.
The algorithm is then:
- Generate a point on the surface,
xyz. - If
g(xyz) >= RNDU01()*gmax, whereRNDU01()is a random number in [0, 1), accept the point. Otherwise, repeat this process.
Chen and Glotzer (2007) apply the method to the surface of a prolate spheroid (one form of ellipsoid) in "Simulation studies of a phenomenological model for elongated virus capsid formation", arXiv: cond-mat/0701125 [cond-mat.soft].
来源:https://stackoverflow.com/questions/56404399/how-to-generate-a-random-sample-of-points-from-a-3-d-ellipsoid-using-python