forward stepwise regression

喜夏-厌秋 提交于 2019-12-20 12:11:08

问题


In R stepwise forward regression, I specify a minimal model and a set of variables to add (or not to add):

min.model = lm(y ~ 1)
fwd.model = step(min.model, direction='forward', scope=(~ x1 + x2 + x3 + ...))

Is there any way to specify using all variables in a matrix/data.frame, so I don't have to enumerate them?

Examples to illustrate what I'd like to do, but they don't work:

# 1
fwd.model = step(min.model, direction='forward', scope=(~ ., data=my.data.frame))

# 2
min.model = lm(y ~ 1, data=my.data.frame)
fwd.model = step(min.model, direction='forward', scope=(~ .))

回答1:


scope expects (quoting the help page ?step)

either a single formula, or a list containing components ‘upper’ and ‘lower’, both formulae. See the details for how to specify the formulae and how they are used.

You can extract and use the formula corresponding to "~." like this:

> my.data.frame=data.frame(y=rnorm(20),foo=rnorm(20),bar=rnorm(20),baz=rnorm(20))
> min.model = lm(y ~ 1, data=my.data.frame)
> biggest <- formula(lm(y~.,my.data.frame))
> biggest
y ~ foo + bar + baz
> fwd.model = step(min.model, direction='forward', scope=biggest)
Start:  AIC=0.48
y ~ 1

       Df Sum of Sq    RSS      AIC
+ baz   1    2.5178 16.015 -0.44421
<none>              18.533  0.47614
+ foo   1    1.3187 17.214  0.99993
+ bar   1    0.4573 18.075  1.97644

Step:  AIC=-0.44
y ~ baz

       Df Sum of Sq    RSS      AIC
<none>              16.015 -0.44421
+ foo   1   0.41200 15.603  1.03454
+ bar   1   0.20599 15.809  1.29688
> 



回答2:


You can do it in one step like this

fwd.model = step(lm(y ~ 1, data=my.data.frame), direction='forward', scope=~ x1 + x2 + x3 + ...)



来源:https://stackoverflow.com/questions/22913774/forward-stepwise-regression

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!