What is the fastest algorithm to calculate the minimum distance between two sets of points?

喜你入骨 提交于 2019-12-17 03:42:28

问题


I want to find the minimum distance between two polygons. I have to find the minimum of shortest distance between each vertex of first shape with all of the vertices of the other one. Something like the Hausdorff Distance, but I need the minimum instead of the maximum.


回答1:


Perhaps you should check out (PDF warning! Also note that, for some reason, the order of the pages is reversed) "Optimal Algorithms for Computing the Minimum Distance Between Two Finite Planar Sets" by Toussaint and Bhattacharya:

It is shown in this paper that the minimum distance between two finite planar sets if [sic] n points can be computed in O(n log n) worst-case running time and that this is optimal to within a constant factor. Furthermore, when the sets form a convex polygon this complexity can be reduced to O(n).

If the two polygons are crossing convex ones, perhaps you should also check out (PDF warning! Again, the order of the pages is reversed) "An Optimal Algorithm for Computing the Minimum Vertex Distance Between Two Crossing Convex Polygons" by Toussaint:

Let P = {p1, p2,..., pm} and Q = {q1, q2,..., qn} be two intersecting polygons whose vertices are specified by their cartesian coordinates in order. An optimal O(m + n) algorithm is presented for computing the minimum euclidean distance between a vertex pi in P and a vertex qj in Q.



来源:https://stackoverflow.com/questions/3700983/what-is-the-fastest-algorithm-to-calculate-the-minimum-distance-between-two-sets

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!