Python using Kalman Filter to improve simulation but getting worse results

谁都会走 提交于 2019-12-06 05:55:17

I updated my test scalar implementation, without making the assumption of perfect measurement R of 1, which was what reduced the kalman gain to a constant value of 1. Now I am seeing an improvement on the time series with reduced RMSE error.

#! /usr/bin/python

import numpy as np
import pylab

import os

# RMSE improved
def main():

    # x = 336 data points of simulated wind speed for 7 days * 24 hour * 2 (every half an hour)
    # Imagine at time t, we will get a x_t fvalue or t+48 or a 24 hours later.
    x = load_x()

    # this is a list that will contain 336 data points of our corrected data
    x_sample_predict_list = []

    # z = 336 data points for 7 days * 24 hour * 2 of actual measured wind speed (every half an hour)
    z = load_z()

    # Here is the setup of the scalar kalman filter
    # reference: http://www.swarthmore.edu/NatSci/echeeve1/Ref/Kalman/ScalarKalman.html
    # state transition matrix (we simply have a scalar)
    # what you need to multiply the last time's state to get the newest state
    # we get the x_t+1 = A * x_t, since we get the x_t+1 directly for simulation
    # we will have a = 1
    a = 1.0

    # observation matrix
    # what you need to multiply to the state, convert it to the same form as incoming measurement 
    # both state and measurements are wind speed, so set h = 1
    h = 1.0

    Q = 1.0     # expected process noise of predicted Wind Speed    
    R = 1.0     # expected measurement noise of Wind Speed

    p_j = Q # process covariance is equal to the initial process covariance estimate

    # Kalman gain is equal to k = hp-_j / (hp-_j + R).  With perfect measurement
    # R = 0, k reduces to k=1/h which is 1
    k = 1.0

    # one week data
    # original R2 = 0.183
    # with delay = 6, R2 = 0.295
    # with delay = 12, R2 = 0.147   
    # with delay = 48, R2 = 0.075
    delay = 6 

    # Kalman loop
    for t, x_sample in enumerate(x):

        if t <= delay:          
            # for the first day of the forecast,
            # we don't have forecast data and measurement 
            # from a day before to do correction
            x_sample_predict = x_sample             
        else: # t > 48
            # for a priori estimate we take x_sample as is
            # x_sample = x^-_j = a x^-_j_1 + b u_j
            # Inside the NWP (numerical weather prediction, 
            # the x_sample should be on x_sample_j-1 (assumption)

            x_sample_predict_prior = a * x_sample

            # we use the measurement from t-delay (ie. could be a day ago)
            # and forecast data from t-delay, to produce a leading residual that can be used to
            # correct the forecast.
            residual = z[t-delay] - h * x_sample_predict_list[t-delay]

            p_j_prior = a**2 * p_j + Q

            k = h * p_j_prior / (h**2 * p_j_prior + R)

            # we update our prediction based on the residual
            x_sample_predict = x_sample_predict_prior + k * residual

            p_j = p_j_prior * (1 - h * k)

            #print k
            #print p_j_prior
            #print p_j
            #raw_input()

        x_sample_predict_list.append(x_sample_predict)

    # initial goodness of fit
    R2_val_initial = calculate_regression(x,z)
    R2_string_initial = "R2 original: {0:10.3f}, ".format(R2_val_initial)   
    print R2_string_initial     # R2_val_original = 0.183

    original_RMSE = (((x-z)**2).mean())**0.5
    print "original_RMSE"
    print original_RMSE 
    print "\n"

    # final goodness of fit
    R2_val_final = calculate_regression(x_sample_predict_list,z)
    R2_string_final = "R2 final: {0:10.3f}, ".format(R2_val_final)  
    print R2_string_final       # R2_val_final = 0.267, which is better

    final_RMSE = (((x_sample_predict-z)**2).mean())**0.5
    print "final_RMSE"
    print final_RMSE    
    print "\n"


    timesteps = xrange(len(x))      
    pylab.plot(timesteps,x,'r-', timesteps,z,'b:', timesteps,x_sample_predict_list,'g--')
    pylab.xlabel('Time')
    pylab.ylabel('Wind Speed')
    pylab.title('Simulated Wind Speed vs Actual Wind Speed')
    pylab.legend(('predicted','measured','kalman'))
    pylab.show()


def calculate_regression(x, y):         
    R2 = 0  
    A = np.array( [x, np.ones(len(x))] )
    model, resid = np.linalg.lstsq(A.T, y)[:2]  
    R2_val = 1 - resid[0] / (y.size * y.var())          
    return R2_val

def load_x():
    return np.array([2, 3, 3, 5, 4, 4, 4, 5, 5, 6, 5, 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 10, 11, 11,
     11, 10, 8, 8, 8, 8, 6, 3, 4, 5, 5, 5, 6, 5, 5, 5, 6, 5, 5, 6, 6, 7, 6, 8, 9, 10,
     12, 11, 10, 10, 10, 11, 11, 10, 8, 8, 9, 8, 9, 9, 9, 9, 8, 9, 8, 11, 11, 11, 12,
     12, 13, 13, 13, 13, 13, 13, 13, 14, 13, 13, 12, 13, 13, 12, 12, 13, 13, 12, 12, 
     11, 12, 12, 19, 18, 17, 15, 13, 14, 14, 14, 13, 12, 12, 12, 12, 11, 10, 10, 10, 
     10, 9, 9, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 7, 7, 8, 8, 8, 6, 5, 5, 
     5, 5, 5, 5, 6, 4, 4, 4, 6, 7, 8, 7, 7, 9, 10, 10, 9, 9, 8, 7, 5, 5, 5, 5, 5, 5, 
     5, 5, 6, 5, 5, 5, 4, 4, 6, 6, 7, 7, 7, 7, 6, 6, 5, 5, 4, 2, 2, 2, 1, 1, 1, 2, 3,
     13, 13, 12, 11, 10, 9, 10, 10, 8, 9, 8, 7, 5, 3, 2, 2, 2, 3, 3, 4, 4, 5, 6, 6,
     7, 7, 7, 6, 6, 6, 7, 6, 6, 5, 4, 4, 3, 3, 3, 2, 2, 1, 5, 5, 3, 2, 1, 2, 6, 7, 
     7, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 8, 8, 8, 8, 7, 7, 
     7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 11, 11, 11, 11, 10, 10, 9, 10, 10, 10, 2, 2,
     2, 3, 1, 1, 3, 4, 5, 8, 9, 9, 9, 9, 8, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7,
     7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 7, 5, 5, 5, 5, 5, 6, 5])

def load_z():
    return np.array([3, 2, 1, 1, 1, 1, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 2, 2, 2,
     2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 5, 4, 4, 5, 5, 5, 6, 6,
     6, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 8, 9, 10, 9, 9, 10, 10, 9,
     9, 10, 9, 9, 10, 9, 8, 9, 9, 7, 7, 6, 7, 6, 6, 7, 7, 8, 8, 8, 8, 8, 8, 7, 6, 7,
     8, 8, 7, 8, 9, 9, 9, 9, 10, 9, 9, 9, 8, 8, 10, 9, 10, 10, 9, 9, 9, 10, 9, 8, 7, 
     7, 7, 7, 8, 7, 6, 5, 4, 3, 5, 3, 5, 4, 4, 4, 2, 4, 3, 2, 1, 1, 2, 1, 2, 1, 4, 4,
     4, 4, 4, 3, 3, 3, 1, 1, 1, 1, 2, 3, 3, 2, 3, 3, 3, 2, 2, 5, 4, 2, 5, 4, 1, 1, 1, 
     1, 1, 1, 1, 2, 2, 1, 1, 3, 3, 3, 3, 3, 4, 3, 4, 3, 4, 4, 4, 4, 3, 3, 4, 4, 4, 4,
     4, 4, 5, 5, 5, 4, 3, 3, 3, 3, 3, 3, 3, 3, 1, 2, 2, 3, 3, 1, 2, 1, 1, 2, 4, 3, 1,
     1, 2, 0, 0, 0, 2, 1, 0, 0, 2, 3, 2, 4, 4, 3, 3, 4, 5, 5, 5, 4, 5, 4, 4, 4, 5, 5, 
     4, 3, 3, 4, 4, 4, 3, 3, 3, 4, 4, 4, 5, 5, 5, 4, 5, 5, 5, 5, 6, 5, 5, 8, 9, 8, 9,
     9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 9, 10, 9, 8, 8, 9, 8, 9, 9, 10, 9, 9, 9,
     7, 7, 9, 8, 7, 6, 6, 5, 5, 5, 5, 3, 3, 3, 4, 6, 5, 5, 6, 5])

if __name__ == '__main__': main()  # this avoids executing main on import your_module
Saltigué

This line is not respecting the Scalar Kalman Filter:

residual = z[t-delay] - h * x_sample_predict_list[t-delay]

In my opinion you should have done:

 residual = z[t -delay] - h * x_sample_predict_prior
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!