f1_score metric in lightgbm

自作多情 提交于 2019-12-03 20:22:20

The docs are a bit confusing. When describing the signature of the function that you pass to feval, they call its parameters preds and train_data, which is a bit misleading.

But the following seems to work:

from sklearn.metrics import f1_score

def lgb_f1_score(y_hat, data):
    y_true = data.get_label()
    y_hat = np.round(y_hat) # scikits f1 doesn't like probabilities
    return 'f1', f1_score(y_true, y_hat), True

evals_result = {}

clf = lgb.train(param, train_data, valid_sets=[val_data, train_data], valid_names=['val', 'train'], feval=lgb_f1_score, evals_result=evals_result)

lgb.plot_metric(evals_result, metric='f1')

To use more than one custom metric, define one overall custom metrics function just like above, in which you calculate all metrics and return a list of tuples.

Edit: Fixed code, of course with F1 bigger is better should be set to True.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!