How does a stackless language work?

久未见 提交于 2019-11-26 17:09:36

The modern operating systems we have (Windows, Linux) operate with what I call the "big stack model". And that model is wrong, sometimes, and motivates the need for "stackless" languages.

The "big stack model" assumes that a compiled program will allocate "stack frames" for function calls in a contiguous region of memory, using machine instructions to adjust registers containing the stack pointer (and optional stack frame pointer) very rapidly. This leads to fast function call/return, at the price of having a large, contiguous region for the stack. Because 99.99% of all programs run under these modern OSes work well with the big stack model, the compilers, loaders, and even the OS "know" about this stack area.

One common problem all such applications have is, "how big should my stack be?". With memory being dirt cheap, mostly what happens is that a large chunk is set aside for the stack (MS defaults to 1Mb), and typical application call structure never gets anywhere near to using it up. But if an application does use it all up, it dies with an illegal memory reference ("I'm sorry Dave, I can't do that"), by virtue of reaching off the end of its stack.

Most so-called called "stackless" languages aren't really stackless. They just don't use the contiguous stack provided by these systems. What they do instead is allocate a stack frame from the heap on each function call. The cost per function call goes up somewhat; if functions are typically complex, or the language is interpretive, this additional cost is insignificant. (One can also determine call DAGs in the program call graph and allocate a heap segment to cover the entire DAG; this way you get both heap allocation and the speed of classic big-stack function calls for all calls inside the call DAG).

There are several reasons for using heap allocation for stack frames:

1) If the program does deep recursion dependent on the specific problem it is solving, it is very hard to preallocate a "big stack" area in advance because the needed size isn't known. One can awkwardly arrange function calls to check to see if there's enough stack left, and if not, reallocate a bigger chunk, copy the old stack and readjust all the pointers into the stack; that's so awkward that I don't know of any implementations. Allocating stack frames means the application never has to say its sorry until there's literally no allocatable memory left.

2) The program forks subtasks. Each subtask requires its own stack, and therefore can't use the one "big stack" provided. So, one needs to allocate stacks for each subtask. If you have thousands of possible subtasks, you might now need thousands of "big stacks", and the memory demand suddenly gets ridiculous. Allocating stack frames solves this problem. Often the subtask "stacks" refer back to the parent tasks to implement lexical scoping; as subtasks fork, a tree of "substacks" is created called a "cactus stack".

3) Your language has continuations. These require that the data in lexical scope visible to the current function somehow be preserved for later reuse. This can be implemented by copying parent stack frames, climbing up the cactus stack, and proceeding.

The PARLANSE programming langauge I implemented does 1) and 2). I'm working on 3).

Stackless Python still has a Python stack (though it may have tail call optimization and other call frame merging tricks), but it is completely divorced from the C stack of the interpreter.

Haskell (as commonly implemented) does not have a call stack; evaluation is based on graph reduction.

There is a nice article about the language framework Parrot at http://www.linux-mag.com/cache/7373/1.html. Parrot does not use the stack for calling and this article explains the technique a bit.

In the stackless environments I'm more or less familiar with (Turing machine, assembly, and Brainfuck), it's common to implement your own stack. There is nothing fundamental about having a stack built into the language.

In the most practical of these, assembly, you just choose a region of memory available to you, set the stack register to point to the bottom, then increment or decrement to implement your pushes and pops.

EDIT: I know some architectures have dedicated stacks, but they aren't necessary.

There is an easy to understand description of continuations on this article: http://www.defmacro.org/ramblings/fp.html

Continuations are something you can pass into a function in a stack-based language, but which can also be used by a language's own semantics to make it "stackless". Of course the stack is still there, but as Ira Baxter described, it's not one big contiguous segment.

Say you wanted to implement stackless C. The first thing to realize is that this doesn't need a stack:

a == b

But, does this?

isequal(a, b) { return a == b; }

No. Because a smart compiler will inline calls to isequal, turning them into a == b. So, why not just inline everything? Sure, you will generate more code but if getting rid of the stack is worth it to you then this is easy with a small tradeoff.

What about recursion? No problem. A tail-recursive function like:

bang(x) { return x == 1 ? 1 : x * bang(x-1); }

Can still be inlined, because really it's just a for loop in disguise:

bang(x) {
    for(int i = x; i >=1; i--) x *= x-1;
    return x;
}

In theory a really smart compiler could figure that out for you. But a less-smart one could still flatten it as a goto:

ax = x;
NOTDONE:
if(ax > 1) {
    x = x*(--ax);
    goto NOTDONE;
}

There is one case where you have to make a small trade off. This can't be inlined:

fib(n) { return n <= 2 ? n : fib(n-1) + fib(n-2); }

Stackless C simply cannot do this. Are you giving up a lot? Not really. This is something normal C can't do well very either. If you don't believe me just call fib(1000) and see what happens to your precious computer.

Call me ancient, but I can remember when the FORTRAN standards and COBOL did not support recursive calls, and therefore didn't require a stack. Indeed, I recall the implementations for CDC 6000 series machines where there wasn't a stack, and FORTRAN would do strange things if you tried to call a subroutine recursively.

For the record, instead of a call-stack, the CDC 6000 series instruction set used the RJ instruction to call a subroutine. This saved the current PC value at the call target location and then branches to the location following it. At the end, a subroutine would perform an indirect jump to the call target location. That reloaded saved PC, effectively returning to the caller.

Obviously, that does not work with recursive calls. (And my recollection is that the CDC FORTRAN IV compiler would generate broken code if you did attempt recursion ...)

Please feel free to correct me if I'm wrong, but I would think that allocating memory on the heap for each function call frame would cause extreme memory thrashing. The operating system does after all have to manage this memory. I would think that the way to avoid this memory thrashing would be a cache for call frames. So if you need a cache anyway, we might as well make it contigous in memory and call it a stack.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!