信号频率

SG3525芯片简介

好久不见. 提交于 2019-11-28 08:39:53
1.SG3525简介: 美国硅通用(Silicon General)半导体公司推出的SG3525,用于驱动N沟道功率MOSFET,是一种性能优良、功能齐全、通用性强的单片集成PWM控制芯片,输出驱动为推拉输出形式,增加了驱动能力;内部含有欠压锁定电路、软启动控制电路、PWM锁存器,有过流保护功能,频率可调,能限制最大占空比。 G3525是电流控制型PWM控制器,所谓电流控制型脉宽调制器是按照接反馈电流来调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环和电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。 2.SG3525性能特点: 1)工作电压范围宽:8~35V; 2)内置5.1V±1.0%的基准电压源; 3)振荡器工作频率宽:100Hz~400 kHz; 4)具有振荡器外部同步功能; 5)死区时间可调; 6)具有输入欠压锁定功能; 7)内置软启动电路; 8)具有PWM所存功能,禁止多脉冲;9)逐个脉冲关断; 10)双源/灌电流输出:±400mA(峰值) 3.SG3525引脚排列图及功能: 图1 SG3525引脚排列图 3.SG3525个引脚功能: 引脚1(Inv.input)误差放大器反向输入端

锁相环(PLL)的工作原理

*爱你&永不变心* 提交于 2019-11-28 02:38:01
http://hi.baidu.com/hieda/blog/item/f87b93240f15a7054c088db9.html 1 .锁相环的基本组成 [部分转贴] 2.锁相环的应用 [1] 锁相环在调制和解调中的应用 [2] 锁相环在调频和解调电路中的应用 [3] 锁相环在频率合成电路中的应用 ================================================================================ 1.锁相环的基本组成 许多电子设备要正常工作,通常需要外部的输入信号与内部的振荡信号同步,利用锁相环路就可以实现这个目的。 锁相环路是一种反馈控制电路,简称锁相环(PLL,Phase-Locked Loop)。锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。 因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。 锁相环通常由鉴相器(PD,Phase Detector)、环路滤波器(LF,Loop Filter)和压控振荡器(VCO,Voltage Controlled Oscillator)三部分组成

一位前辈的工作经验

时光怂恿深爱的人放手 提交于 2019-11-28 02:36:02
http://www.cnblogs.com/jianyungsun/archive/2010/12/07/1899533.html 在公司里的几个月,做的项目其实不多,但是收获还是有一些,我觉得收获最大的是 设计 理念的改变,这也是我这段 时间 最想总结的,我会在后面逐渐阐述。 如对此文有疑问或想给作者提 建议 请给作者发email: wangdian@tom.com 1/时序是设计出来的 我的boss有在华为及峻龙工作的背景,自然就给我们讲了一些华为及altera做逻辑的一些东西,而我们的项目规范,也基本上是按华为的那一套去做。在工作这几个月中,给我感触最深的是华为的那句话:时序是设计出来的,不是仿出来的,更不是湊出来的。 在我们公司,每一个项目都有很严格的评审,只有评审通过了,才能做下一步的工作。以做逻辑为例,并不是一上来就开始写代码,而是要先写总体设计方案和逻辑详细设计方案,要等这些方案评审通过,认为可行了,才能进行编码,一般来说这部分工作所占的时间要远大于编码的时间。 总体方案主要是涉及模块划分,一级模块和二级模块的接口信号和时序(我们要求把接口信号的时序波形描述出来)以及将来如何测试设计。在这一级方案中,要保证在今后的设计中时序要收敛到一级模块(最后是在二级模块中)。什么意思呢?我们在做详细设计的时候,对于一些信号的时序肯定会做一些调整的

性能最大化ΔΣ 转换器

自作多情 提交于 2019-11-28 02:34:57
http://hi.baidu.com/hieda/blog/item/4a7f2382ca9f70a60cf4d21d.html 作者:德州仪器公司 Russell Anderson 数据转换器分辨率和速度一直处于不断改进中。我仍然记得大概25年前在Tektronix参加的一个会议上,集体讨论了数据转换器的未来发展方向。我甚至不敢想象分辨率能够从 16 位提高到 24 位。但是,ΔΣ 转换器的架构却能够实现如此激动人心的分辨率突破。 ΔΣ 转换器能够实现 24 位的转换结果。虽然这听起来让人振奋,但是为了达到最佳效果,我们仍然需要正确选择许多参数。随着抽样、调制时钟和 PGA 的调整,相同数据速率在性能方面会有所不同。在优化数据转换结果时,对于这些方方面面做到完全了解并非易事。另外一些问题还包括输入阻抗、滤波器响应、抗混淆,以及长期漂移。 ΔΣ 转换器介绍 ΔΣ 转换器的优势就在于它把大部分转换过程转移到了数字域。这使得它能够把高性能模拟与数字处理融合在一起。模拟元件采用单个比较器、积分器和1位的DAC。由于1位DAC只有两个输出,因此它在整个电压范围内均是线性化的。这种高水平的线性化是 ΔΣ 转换器实现高精确度的原因之一。最终的绝对精度主要取决于基准电压的精度。 ΔΣ 调制器 图1:ΔΣ调制器 让我们看一个简单的 ΔΣ 调制器中的波形(参见图1)。其中输入信号X1比例为1/4

about DCT---转载

浪子不回头ぞ 提交于 2019-11-27 23:21:20
about DCT......... MPEG采用了Ahmed(一个巨牛的数学家) 等人于70年代提出的离散余弦变换(DCT-Discrete Cosine Transform)压缩算法,降低视频信号的空间冗余度。 DCT将运动补偿误差或原画面信息块转换成代表不同频率分量的系数集,这有两个优点:其一,信号常将其能量的大部分集中于频率域的1个小范围内,这样一来,描述不重要的分量只需要很少的比特数;其二,频率域分解映射了人类视觉系统的处理过程,并允许后继的 量化过程满足其灵敏度的要求。 关于这一点在我手头的教程中有详尽的描述,让我直接引用: 视频信号的频谱线在0-6MHz范围内,而且1幅视频图像内包含的大多数为低频频谱线,只在占图像区域比例很低的图像边缘的视频信号中才含有高频的谱线。因此,在视频信号数字处理时,可根据频谱因素分配比特数:对包含信息量大的低频谱区域分配较多的比特数,对包含信息量低的高频 谱区域分配较少的比特数,而图像质量并没有可察觉的损伤,达到码率压缩的目的。然而,这一切要在低熵(Entropy)值的情况下,才能达到有效的编码。能否对一串数据进行有效的编码,取决于每个数据出现的概率。每个数据出现的概率差别大,就表明熵值低, 可以对该串数据进行高效编码。反之,出现的概率差别小,熵值高,则不能进行高效编码。视频信号的数字化是在规定的取样频率下由A/D转换器对视频电平转换而来的

射频芯片,最全介绍!

拥有回忆 提交于 2019-11-26 19:27:03
一部可支持打电话、发短信、网络服务、APP应用的手机,通常包含五个部分:射频、基带、电源管理、外设、软件。 射频: 一般是信息发送和接收的部分; 基带: 一般是信息处理的部分; 电源管理: 一般是节电的部分,由于手机是能源有限的设备,所以电源管理十分重要; 外设: 一般包括LCD,键盘,机壳等; 软件: 一般包括系统、驱动、中间件、应用。 在手机终端中,最重要的核心就是射频芯片和基带芯片。射频芯片负责射频收发、频率合成、功率放大;基带芯片负责信号处理和协议处理。那么射频芯片和基带芯片是什么关系? 射频芯片和基带芯片的关系 射频(Radio Frenquency)和基带(Base Band)皆来自英文直译。其中射频最早的应用就是Radio——无线广播(FM/AM),迄今为止这仍是射频技术乃至无线电领域最经典的应用。 基带则是band中心点在0Hz的信号,所以基带就是最基础的信号。有人也把基带叫做“未调制信号”,曾经这个概念是对的,例如AM为调制信号(无需调制,接收后即可通过发声元器件读取内容)。 但对于现代通信领域而言,基带信号通常都是指经过数字调制的,频谱中心点在0Hz的信号。而且没有明确的概念表明基带必须是模拟或者数字的,这完全看具体的实现机制。 言归正传,基带芯片可以认为是包括调制解调器,但不止于调制解调器,还包括信道编解码、信源编解码,以及一些信令处理。而射频芯片

常见EMC疑问及对策

≡放荡痞女 提交于 2019-11-26 04:54:00
1. 为什么要对产品做电磁兼容设计? 答:满足产品功能要求、减少调试时间,使产品满足电磁兼容标准的要求,使产品不会对系统中的其它设备产生电磁干扰。 2. 对产品做电磁兼容设计可以从哪几个方面进行? 答:电路设计(包括器件选择)、软件设计、线路板设计、屏蔽结构、信号线/电源线滤波、电路的接地方式设计。 3. 在电磁兼容领域,为什么总是用分贝(dB)的单位描述?10mV是多少dBmV 答:因为要描述的幅度和频率范围都很宽,在图形上用对数坐标更容易表示,而dB就是用对数表示时的单位,10mV是20dBmV。 4. 为什么频谱分析仪不能观测静电放电等瞬态干扰? 答:因为频谱分析仪是一种窄带扫频接收机,它在某一时刻仅接收某个频率范围内的能量。而静电放电等瞬态干扰是一种脉冲干扰,其频谱范围很宽,但时间很短,这样频谱分析仪在瞬态干扰发生时观察到的仅是其总能量的一小部分,不能反映实际的干扰情况。 5. 在现场进行电磁干扰问题诊断时,往往需要使用近场探头和频谱分析仪,怎样用同轴电缆制作一个简易的近场探头? 答:将同轴电缆的外层(屏蔽层)剥开,使芯线暴露出来,将芯线绕成一个直径1~2厘米小环(1~3匝),焊接在外层上。 6. 一台设备,原来的电磁辐射发射强度是300mV/m,加上屏蔽箱后,辐射发射降为3mV/m,这个机箱的屏蔽效能是多少dB? 答:这个机箱的屏蔽效能应为40dB。 7. 设计屏蔽机箱时

电磁兼容EMC问题汇总?这里有30个常见为什么

空扰寡人 提交于 2019-11-26 04:51:40
1、为什么要对产品做电磁兼容设计? 答:满足产品功能要求、减少调试时间,使产品满足电磁兼容标准的要求,使产品不会对系统中的其它设备产生电磁干扰。 2、对产品做电磁兼容设计可以从哪几个方面进行? 答:电路设计(包括器件选择)、软件设计、线路板设计、屏蔽结构设计、信号线/电源线滤波设计、电路接地方式设计。 3、在电磁兼容领域,为什么总是用分贝(dB)的单位描述?10mV是多少dBmV? 答:因为要描述的幅度和频率范围都很宽,在图形上用对数坐标更容易表示,而dB就是用对数表示时的单位,10mV是20dBmV。 4、为什么频谱分析仪不能观测静电放电等瞬态干扰? 答:因为频谱分析仪是一种窄带扫频接收机,它在某一时刻仅接收某个频率范围内的能量。而静电放电等瞬态干扰是一种脉冲干扰,其频谱范围很宽,但时间很短,因而频谱分析仪在瞬态干扰发生时只能观察到其总能量的一小部分,不能反映实际的干扰情况。 5、在现场诊断电磁干扰问题时,往往需要使用近场探头和频谱分析仪,怎样用同轴电缆制作一个简易的近场探头? 答:将同轴电缆的外层(屏蔽层)剥开,使芯线暴露出来,将芯线绕成一个直径1 2厘米的小环(1 3匝),焊接在外层上。 6、一台设备,原来的电磁辐射发射强度是300mV/m,加上屏蔽机箱后,辐射发射降为3mV/m,那么这个机箱的屏蔽效能是多少dB? 答:这个机箱的屏蔽效能应为40dB。 7、设计屏蔽机箱时