scipy.optimize with non linear constraints
问题 I have non-linear function with non-linear constraints and I'd like to optimize it. I don't know how to define non-linear constraints using scipy.optimize. My code so far looks like: from math import cos, atan import numpy as np from scipy.optimize import minimize import sympy as sy def f(x): return 0.1*x*y def ineq_constraint(x): x**2 + y**2 - (5+2.2*sy.cos(10*sy.atan(x/y)))**2 return x,y con = {'type': 'ineq', 'fun': ineq_constraint} minimize(f,x0,method='SLSQP',constraints=con) 回答1: The