VOT 2017挑战赛——目标追踪相关分享
转载于微信公众号:新智元 视觉跟踪领域国际顶级赛事 Visual-Object-Tracking Challenge (VOT) 2017年结果出炉,结合传统滤波及深度学习的方案取得最佳成绩。本文是第二名北京邮电大学代表团队的技术分享。他们基于滤波的框架,抛弃传统特征,只使用CNN特征,减少了特征冗余,缓解了模型过拟合,使追踪器在速度和精度上都有不小的提高。代码分享链接:https://github.com/he010103/CFWCR.git 随着深度学习在计算机视觉方面大放异彩,近几年物体追踪也得到了飞速的发展。物体追踪解决的问题是在一段时间内对于同一个物体在复杂的背景下(如遮挡,光照,物体旋转等),进行持续高速的跟踪。因此,物体追踪是监控,安防,自动驾驶,无人机,智能家居等应用中必须解决的关键课题。 作为视觉跟踪领域的最高峰,Visual-Object-Tracking Challenge (VOT) 是国际目标跟踪领域最权威的测评平台,由伯明翰大学、卢布尔雅那大学、布拉格捷克技术大学、奥地利科技学院联合创办,旨在评测在复杂场景下单目标短时跟踪的算法性能。由于每年的评测序列都会更新,且标注的精确度一年一年提高,VOT竞赛也被视为视觉跟踪领域最难的竞赛,远远超过了其他数据集。因此,每年最好的追踪算法都会在上面一展拳脚,在激烈的比拼中擦出灵感的火花。 今年的比赛 VOT 2017