线性代数之——矩阵范数和条件数
1. 矩阵范数 我们怎么来衡量一个矩阵的大小呢?针对一个向量,它的长度是 \(||\boldsymbol x||\) 。针对一个矩阵,它的范数是 \(||A||\) 。有时候我们会用向量的范数来替代长度这个说法,但对于矩阵我们只说范数。有很多方式来定义矩阵的范数,我们来看看所有范数的的要求然后选择其中一个。 Frobenius 对矩阵中的所有元素进行平方 \(|a_{ij}|^2\) 再相加,然后 \(||A||_F\) 就是它的平方根。这就像把矩阵看作是一个很长的有 \(n^2\) 个元素的向量,这有时候会很有用,但这里我们不选择它。 向量范数满足三角不等式,即 $||\boldsymbol x+\boldsymbol y|| $ 不大于 $||\boldsymbol x|| + ||\boldsymbol y|| $, \(2\boldsymbol x\) 或者 \(-2\boldsymbol x\) 的长度变为两倍。同样的规则也应用于矩阵的范数: 第二个对矩阵范数的要求是新的,因为矩阵可以相乘。范数 \(||A||\) 控制着从 \(\boldsymbol x\) 到 \(A\boldsymbol x\) 和从 \(A\) 到 \(B\) 的增长。 根据此,我们可以这样定义矩阵的范数: 恒等矩阵的范数为 1,针对一个正交矩阵,我们有 \(||Q\boldsymbol x||=