python机器学习案例系列教程――LightGBM算法
pip install lightgbm 1 1 gitup网址: https://github.com/Microsoft/LightGBM http://lightgbm.apachecn.org/cn/latest/index.html xgboost的出现,让数据民工们告别了传统的机器学习算法们:RF、GBM、SVM、LASSO……..。现在微软推出了一个新的boosting框架,想要挑战xgboost的江湖地位。 顾名思义,lightGBM包含两个关键点:light即轻量级,GBM 梯度提升机。 LightGBM 是一个梯度 boosting 框架,使用基于学习算法的决策树。它可以说是分布式的,高效的,有以下优势: 更快的训练效率 低内存使用 更高的准确率 支持并行化学习 可处理大规模数据 如果你觉得这篇文章看起来稍微还有些吃力,或者想要系统地学习人工智能,那么推荐你去看床长人工智能教程。非常棒的大神之作,教程不仅通俗易懂,而且很风趣幽默。点击 这里 可以查看教程。 其缺点,或者说不足之处: 每轮迭代时,都需要遍历整个训练数据多次。如果把整个训练数据装进内存则会限制训练数据的大小;如果不装进内存,反复地读写训练数据又会消耗非常大的时间。 预排序方法(pre-sorted):首先,空间消耗大。这样的算法需要保存数据的特征值,还保存了特征排序的结果(例如排序后的索引