error: The model expects 3 input arrays, but only received one array. Found: array with shape (10, 20, 50, 50, 1)

匿名 (未验证) 提交于 2019-12-03 00:56:02

问题:

 main_model = Sequential()  main_model.add(Conv3D(32, 3, 3,3, input_shape=(20,50,50,1)))'   main_model.add(Activation('relu'))  main_model.add(MaxPooling3D(pool_size=(2, 2,2))  main_model.add(Conv3D(64, 3, 3,3))  main_model.add(Activation('relu'))  main_model.add(MaxPooling3D(pool_size=(2, 2,2)))  main_model.add(Dropout(0.8))  main_model.add(Flatten())   #lower features model - CNN2  lower_model1 = Sequential()  lower_model1.add(Conv3D(32, 3, 3,3, input_shape=(20,50,50,1)))   lower_model1.add(Activation('relu'))  lower_model1.add(MaxPooling3D(pool_size=(2, 2,2)))   lower_model1.add(Dropout(0.8))  lower_model1.add(Flatten())   #lower features model - CNN3  lower_model2 = Sequential()  lower_model2.add(Conv3D(32, 3, 3,3, input_shape=(20,50,50,1)))   lower_model2.add(Activation('relu'))  lower_model2.add(MaxPooling3D(pool_size=(2, 2,2)))   lower_model2.add(Dropout(0.8))  lower_model2.add(Flatten())    merged_model = Merge([main_model, lower_model1,lower_model2],mode='concat')   final_model = Sequential()  final_model.add(merged_model)  final_model.add(Dense(1024,init='normal'))  final_model.add(Activation('relu'))  final_model.add(Dropout(0.5))  final_model.add(Dense(2,init='normal'))  final_model.add(Activation('softmax'))   final_model.compile(loss='binary_crossentropy', optimizer='Adam', metrics=  ['accuracy'])  train=train_data[-10:]  test=train_data[-2:]  X = np.array([i[0] for i in train]).reshape(-1,20,50,50,1)  Y = [i[1] for i in train]  test_x = np.array([i[0] for i in test]).reshape(-1,20,50,50,1)  test_y = [i[1] for i in test]  final_model.fit(np.array(X),np.array(Y),validation_data=  (np.array(test_x),np.array(test_y)),batch_size=batch_size,nb_epoch =   nb_epoch,validation_split=0.2,shuffle=True,verbose=1) 

i'm using 50x50 images contained in 20 chunk and that's y my numpy array is 20x50x50 1st and 2nd modelsI'm using sequential model for multi scale 3d cnn network...i don't know y i'm getting this kind of result

see val_acc,val_loss stays the same in every epoch

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!