题目
输入一个整型数组,数组里有正数也有负数。数组中一个或连续的多个整数组成一个子数组。求所有子数组的和的最大值。要求时间复杂度为O(n)。例如输入的数组为{1,-2,3,10,-4,7,2,-5},和最大的子数组为{3,10,-4,7,2},因此输出为该子数组的和18。
思路
一般解法
- 从头到尾累加数字,保存到一个临时变量curr_sum中
- 如果前几项的和为负,则加上此和之后比本身的值还要小,抛弃原来所计算得到的和,curr_sum从本元素开始计数 ;否则,把当前元素累加到curr_sum
- 把curr_sum与最大值max_sum比较(max_sum保存每个连续数组的最大和)

class Solution {
public:
int FindGreatestSumOfSubArray(vector<int> arr) {
if(arr.size()==0)
return 0;
else if(arr.size()==1)
return arr[0];
int curSum=arr[0];
int maxSum=-0x3f3f;
for(int i=1;i<arr.size();++i)
{
if(curSum<0)//如果前几项的和为负,则加上此和之后比本身的值还要小,数组从本元素开始计数
curSum=arr[i];
else
curSum+=arr[i];
maxSum=max(maxSum,curSum);
}
return maxSum;
}
};
动态规划
f(i)表示以第i个数字结尾的子数组的最大和,那么只需求出max[f(i)],状态转移方程如下
v[i],i==0||f(i-1)<0
f(i)=
v[i]+f(i-1),i>0&&f(i-1)>0
code:
class Solution {
public:
int FindGreatestSumOfSubArray(vector<int> arr) {
if(arr.size()==0)
return 0;
else if(arr.size()==1)
return arr[0];
int curSum=0;
int maxSum=-0x3f3f;
for(int i=0;i<arr.size();++i)
{
curSum=curSum<0?arr[i]:arr[i]+curSum;
maxSum=max(maxSum,curSum);
}
return maxSum;
}
};
来源:https://www.cnblogs.com/tianzeng/p/10238286.html