How do I create a multiline plot using seaborn?

混江龙づ霸主 提交于 2019-12-18 02:18:24

问题


I am trying out Seaborn to make my plot visually better than matplotlib. I have a dataset which has a column 'Year' which I want to plot on the X-axis and 4 Columns say A,B,C,D on the Y-axis using different coloured lines. I was trying to do this using the sns.lineplot method but it allows for only one variable on the X-axis and one on the Y-axis. I tried doing this

sns.lineplot(data_preproc['Year'],data_preproc['A'], err_style=None)
sns.lineplot(data_preproc['Year'],data_preproc['B'], err_style=None)
sns.lineplot(data_preproc['Year'],data_preproc['C'], err_style=None)
sns.lineplot(data_preproc['Year'],data_preproc['D'], err_style=None)

But this way I don't get a legend in the plot to show which coloured line corresponds to what. I tried checking the documentation but couldn't find a proper way to do this.


回答1:


Seaborn favors the "long format" as input. The key ingredient to convert your DataFrame from its "wide format" (one column per measurement type) into long format (one column for all measurement values, one column to indicate the type) is pandas.melt. Given a data_preproc structured like yours, filled with random values:

num_rows = 20
years = list(range(1990, 1990 + num_rows))
data_preproc = pd.DataFrame({
    'Year': years, 
    'A': np.random.randn(num_rows).cumsum(),
    'B': np.random.randn(num_rows).cumsum(),
    'C': np.random.randn(num_rows).cumsum(),
    'D': np.random.randn(num_rows).cumsum()})

A single plot with four lines, one per measurement type, is obtained with

sns.lineplot(x='Year', y='value', hue='variable', 
             data=pd.melt(data_preproc, ['Year']))

(Note that 'value' and 'variable' are the default column names returned by melt, and can be adapted to your liking.)




回答2:


See the documentation:

sns.lineplot(x="Year", y="signal", hue="label", data=data_preproc)

You probably need to re-organize your dataframe in a suitable way so that there is one column for the x data, one for the y data, and one which holds the label for the data point.

You can also just use matplotlib.pyplot. If you import seaborn, much of the improved design is also used for "regular" matplotlib plots. Seaborn is really "just" a collection of methods which conveniently feed data and plot parameters to matplotlib.




回答3:


This:

sns.lineplot(data=data_preproc)

will do what you want.



来源:https://stackoverflow.com/questions/52308749/how-do-i-create-a-multiline-plot-using-seaborn

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!