Longest Increasing Subsequence, Dynamic Programing

橙三吉。 提交于 2019-12-10 12:21:18

问题


I have the following problem:

Find the longest increasing subsequence of a given sequence / array.

In other words, find a subsequence of array in which the subsequence’s elements are in strictly increasing order, and in which the subsequence is as long as possible. This subsequence is not necessarily contiguous, or unique. In this case, we only care about the length of the longest increasing subsequence.

Example :

Input : [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15] Output : 6 The sequence : [0, 2, 6, 9, 13, 15] or [0, 4, 6, 9, 11, 15] or [0, 4, 6, 9, 13, 15]

This is a DP problem and I do have some issue at the memorization step. Here is my code:

public int lis(final List<Integer> a) {
    return maxIncreasing(0, Integer.MIN_VALUE, a);
}
HashMap<Integer, Integer> memo = new HashMap<>();
private int maxIncreasing(int index, int lastElt, final List<Integer> a) {
    if(memo.containsKey(index)) return memo.get(index);
    // end?
    if(index >= a.size()) return 0;
    int weTake = Integer.MIN_VALUE;
    // can we take it?
    if(a.get(index) > lastElt) {
        // take it or don't
        weTake = maxIncreasing(index + 1, a.get(index), a) + 1;
    }
    int weDoNot = maxIncreasing(index + 1, lastElt, a);
    int max = Math.max(weTake, weDoNot);
    memo.put(index, max);
    return max;
}

Without the memo HashMap in place I have the correct result, I am not sure why this is giving me the wrong result once in place.

Thanks.


回答1:


That is because you are not taking care of the lastElt. Basically, you can have more than one solution for a given index depending on what was the lastElt value. Therefore, you would have to have a Key for your memo that contains both index and lastElt.

You could do something like this:

    class Key {
        final int index;
        final int lastEl;

        Key(int index, int lastEl) {
            this.index = index;
            this.lastEl = lastEl;
        }

        @Override
        public boolean equals(Object o) {
            if (this == o) return true;
            if (o == null || getClass() != o.getClass()) return false;

            Key key = (Key) o;

            if (index != key.index) return false;
            return lastEl == key.lastEl;

        }

        @Override
        public int hashCode() {
            int result = index;
            result = 31 * result + lastEl;
            return result;
        }
    }

    public int lis(final List<Integer> a) {
        return maxIncreasing(0, Integer.MIN_VALUE, a);
    }
    HashMap<Key, Integer> memo = new HashMap<>();
    private int maxIncreasing(int index, int lastElt, final List<Integer> a) {
        Key key = new Key(index ,lastElt);
        if(memo.containsKey(key)) return memo.get(key);
        // end?
        if(index >= a.size()) return 0;
        int weTake = Integer.MIN_VALUE;
        // can we take it?
        if(a.get(index) > lastElt) {
            // take it or don't
            weTake = maxIncreasing(index + 1, a.get(index), a) + 1;
        }
        int weDoNot = maxIncreasing(index + 1, lastElt, a);
        int max = Math.max(weTake, weDoNot);
        memo.put(key, max);
        return max;
    }


来源:https://stackoverflow.com/questions/41090875/longest-increasing-subsequence-dynamic-programing

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!