问题
I have a csv file that has a few hundred rows and 26 columns, but the last few columns only have a value in a few rows and they are towards the middle or end of the file. When I try to read it in using read_csv() I get the following error. "ValueError: Expecting 23 columns, got 26 in row 64"
I can't see where to explicitly state the number of columns in the file, or how it determines how many columns it thinks the file should have. The dump is below
In [3]:
infile =open(easygui.fileopenbox(),"r")
pledge = read_csv(infile,parse_dates='true')
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-3-b35e7a16b389> in <module>()
1 infile =open(easygui.fileopenbox(),"r")
2
----> 3 pledge = read_csv(infile,parse_dates='true')
C:\Python27\lib\site-packages\pandas-0.8.1-py2.7-win32.egg\pandas\io\parsers.pyc in read_csv(filepath_or_buffer, sep, dialect, header, index_col, names, skiprows, na_values, thousands, comment, parse_dates, keep_date_col, dayfirst, date_parser, nrows, iterator, chunksize, skip_footer, converters, verbose, delimiter, encoding, squeeze)
234 kwds['delimiter'] = sep
235
--> 236 return _read(TextParser, filepath_or_buffer, kwds)
237
238 @Appender(_read_table_doc)
C:\Python27\lib\site-packages\pandas-0.8.1-py2.7-win32.egg\pandas\io\parsers.pyc in _read(cls, filepath_or_buffer, kwds)
189 return parser
190
--> 191 return parser.get_chunk()
192
193 @Appender(_read_csv_doc)
C:\Python27\lib\site-packages\pandas-0.8.1-py2.7-win32.egg\pandas\io\parsers.pyc in get_chunk(self, rows)
779 msg = ('Expecting %d columns, got %d in row %d' %
780 (col_len, zip_len, row_num))
--> 781 raise ValueError(msg)
782
783 data = dict((k, v) for k, v in izip(self.columns, zipped_content))
ValueError: Expecting 23 columns, got 26 in row 64
回答1:
You can use names
parameter. For example, if you have csv file like this:
1,2,1
2,3,4,2,3
1,2,3,3
1,2,3,4,5,6
And try to read it, you'll receive and error
>>> pd.read_csv(r'D:/Temp/tt.csv')
Traceback (most recent call last):
...
Expected 5 fields in line 4, saw 6
But if you pass names
parameters, you'll get result:
>>> pd.read_csv(r'D:/Temp/tt.csv', names=list('abcdef'))
a b c d e f
0 1 2 1 NaN NaN NaN
1 2 3 4 2 3 NaN
2 1 2 3 3 NaN NaN
3 1 2 3 4 5 6
Hope it helps.
回答2:
you can also load the CSV with separator '^', to load the entire string to a column, then use split to break the string into required delimiters. After that, you do a concat to merge with the original dataframe (if needed).
temp=pd.read_csv('test.csv',sep='^',header=None,prefix='X')
temp2=temp.X0.str.split(',',expand=True)
del temp['X0']
temp=pd.concat([temp,temp2],axis=1)
回答3:
The problem with the given solution is that you have to know the max number of columns required. I couldn't find a direct function for this problem, but you can surely write a def which can:
- read all the lines
- split it
- count the number of words/elements in each row
- store the max number of words/elements
- place that max value in the names option (as suggested by Roman Pekar)
Here is the def (function) I wrote for my files:
def ragged_csv(filename):
f=open(filename)
max_n=0
for line in f.readlines():
words = len(line.split(' '))
if words > max_n:
max_n=words
lines=pd.read_csv(filename,sep=' ',names=range(max_n))
return lines
回答4:
Suppose you have a file like this:
a,b,c
1,2,3
1,2,3,4
You could use csv.reader
to clean the file first,
lines=list(csv.reader(open('file.csv')))
header, values = lines[0], lines[1:]
data = {h:v for h,v in zip (header, zip(*values))}
and get:
{'a' : ('1','1'), 'b': ('2','2'), 'c': ('3', '3')}
If you don't have header you could use:
data = {h:v for h,v in zip (str(xrange(number_of_columns)), zip(*values))}
and then you can convert dictionary to dataframe with
import pandas as pd
df = pd.DataFrame.from_dict(data)
来源:https://stackoverflow.com/questions/20154303/pandas-read-csv-expects-wrong-number-of-columns-with-ragged-csv-file