CNN: input stride vs. output stride

泄露秘密 提交于 2019-12-04 09:31:05

Input stride is the stride of the filter . How much you shift the filter in the output .

Output Stride this is actually a nominal value . We get feature map in a CNN after doing several convolution , max-pooling operations . Let's say our input image is 224 * 224 and our final feature map is 7*7 .

Then we say our output stride is : 224/7 = 32 (Approximate of what happened to the image after down sampling .)

This tensorflow script describe what is this output stride , and how to use in FCN which is the case of dense prediction .

one uses inputs with spatial dimensions that are multiples of 32 plus 1, e.g., [321, 321]. In this case the feature maps at the ResNet output will have spatial shape [(height - 1) / output_stride + 1, (width - 1) / output_stride + 1] and corners exactly aligned with the input image corners, which greatly facilitates alignment of the features to the image. Using as input [225, 225] images results in [8, 8] feature maps at the output of the last ResNet block.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!