直角坐标系

地球坐标系与投影方式的理解(关于北京54,西安80,WGS84;高斯,兰勃特,墨卡托投影)

≡放荡痞女 提交于 2019-12-18 14:58:17
一、地球模型 地球是一个近似椭球体,测绘时用椭球模型逼近,这个模型叫做 参考椭球 ,如下图: 赤道是一个半径为a的近似圆,任一圈经线是一个半径为b的近似圆。a称为椭球的长轴半径,b称为椭球的短轴半径。 a ≈ 6378.137千米,b≈6356.752千米。(实际上,a也不是恒定的,最长处和最短处相差72米,b的最长处和最短处相差42米,算很小了) 地球参考椭球基本参数: 长轴:a 短轴:b 扁率:α=(a-b) / a 第一偏心率:e=√(a 2 -b 2 ) / a 第二偏心率:e ' =√(a 2 -b 2 ) / b 这几个参数定了,参考椭球的数学模型就定了。 什么是大地坐标系? 大地坐标系 是大地测量中以 参考椭球 面 为基准面建立起来的坐标系。地面点的位置用大地经度、大地纬度和大地高度表示:(L, B, H)。 空间直角坐标系 是以 参考椭球 中心 为原点,以原点到0度经线与赤道交点的射线为x轴,原点到90度经线与赤道交点的射线为y轴,以地球旋转轴向北为z轴:(x, y, z) 共同点:显然,这两种坐标系都必须基于一个参考椭球。 不同点:大地坐标系以面为基准,所以还需要确定一个标准海平面。而空间直角坐标系则以一个点为基准,所以还需要确定一个中心点。 只要确定了椭球基本参数,则大地坐标系和空间直角坐标系就相对确定了,只是两种不同的表达而矣,这两个坐标系的点是一一对应的。

Cesium 坐标系转换

做~自己de王妃 提交于 2019-12-18 13:10:03
1 Cesium中的地形 Cesium中的地形系统是一种由流式瓦片数据生成地形mesh的技术,厉害指出在于其可以自动模拟出地面、海洋的三维效果。创建地形图层的方式如下: var terrainProvider = new Cesium.CesiumTerrainProvider({ url : 'https://assets.agi.com/stk-terrain/v1/tilesets/world/tiles', // 默认立体地表 // 请求照明 requestVertexNormals: true, // 请求水波纹效果 requestWaterMask: true }); viewer.terrainProvider = terrainProvider; Cesium支持两种类型的地形,STK World Terrain和Small Terrain。 1.1 STK世界地形 STK世界地形(STK World Terrain),其是高分辨率, 基于quantized mesh的地形。这是一种基于网格的地形,可充分利用GL中的Shader来渲染,效果相当逼真。该地形使用了多种数据源,分别适应不同地区和不同精度时的情形,如,美国本土使用美国国家高程数据集(National Elevation Dataset,NED)的高程,精度3-30米;对于欧洲使用EU-DEM高程

聊聊GIS中那些坐标系

与世无争的帅哥 提交于 2019-12-11 07:10:31
聊聊GIS中那些坐标系 </h1> <div class="clear"></div> <div class="postBody"> 转载请声明到标题。 B站/博客园/CSDN/知乎:@秋意正寒 很开心能跃居百度关键词第一位,近期打算重写一下这篇博客,以更系统、更齐全的角度,更通俗易懂的语言讲授坐标系的初步认知。 从第一次上地图学的课开始,对GIS最基本的地图坐标系统就很迷。也难怪,我那时候并不是GIS专业的学生,仅仅是一门开卷考试的专业选修课,就没怎么在意。 等我真正接触到了各种空间数据产品,我才知道万里长征第一步就是:处理坐标系统。 想必各位从业人员多多少少都会听说过几个名词,可能有那么点印象吧。比如,高斯克吕格,北京54,西安80,WGS84,投影坐标系统等等。 今天就从头说起,讲讲那些坐标系统的事情。 惯例,给个目录: 经纬度与GCS(Geographic Coordinate System, 地理坐标系统) 平面坐标与PCS(Projection Coordinate System, 投影坐标系统) GCS和PCS的转化问题(三参数与七参数问题) 火星坐标问题 在第一部分,我介绍一下以经纬度为准的地理坐标系统,也顺带提及一下我国的高程坐标系。主要涉及的内容有:大地水准面问题,椭球问题,常见的GCS(如北京54,西安80,CGCS2000,WGS84等)

AI-图像基础知识-02

痞子三分冷 提交于 2019-12-05 12:32:01
目录 图像坐标系 图像数字化 图像坐标系     在前面的数据标注文章中讲述如何进行标注,而标注后会保留4个坐标点,那么这些坐标点如何表示在图片中的位置?要表示一个点或图形的位置,就需要涉及到坐标系的概念。今天就来了解一下图像的坐标系。一般大家首先接触到的坐标系应该是的笛卡尔坐标系,如下所示:     如下图所示,是以图像左上角为原点建立的以像素为单位的直角坐标系 u-v 。其横坐标u与纵坐标v分别是在其图像数组中所在的列数和行数。 以上坐标在OpenCV中,u对应 x , v对应 y     由于 (u,v) 只代表像素的列数与行数,而像素在图像中的位置并没有用物理单位表示出来,所以还要建立以物理单位(如毫米)表示的图像坐标系x-y。将相机光轴与图像平面的交点(一般位于图像平面的中心处,也称为图像的主点(principal point)定义为该坐标系的原点O1,且x轴与u轴平行,y轴与v轴平行,假设(u0,v0)代表O1在u-v坐标系下的坐标,dx与dy分别表示每个像素在横轴x和纵轴y上的物理尺寸,则图像中的每个像素在u-v坐标系中的坐标和在x-y坐标系中的坐标之间都存在如下的关系: 上述公式中我们假设物理坐标系统中的单位为mm,则dx的单位为mm/px,而x/dx的单位则是px.     为使用方便,一般常用齐次坐标与矩阵形式表示为:     以上知识可能比较难懂

实验5 OpenGL变换综合练习

Deadly 提交于 2019-12-05 00:23:55
1 .实验目的: 理解掌握OpenGL程序的投影变换,能正确使用投影变换函数,实现正投影与透视投影。 2 .实验内容: (1) 使用图a中的尺寸绘制小桌,三维效果图见图b。要求绘制小桌各部件时只能使用函数glutSolidCube()和变换函数,不能使用函数glVertex()等直接指定顶点位置; (2)添加键盘按键或右键菜单控制实现小桌效果图在正投影和透视投影模式间的切换;在此基础上,考虑一点透视、两点透视、三点透视三类效果图的显示。 3 .实验原理: OpenGL通过相机模拟、可以实现 计算机 图形学中最基本的三维变换,即几何变换、投影变换、视口变换等,同时,OpenGL还实现了矩阵堆栈等。理解掌握了有关坐标变换的内容,就算真正走进了精彩地三维世界。 一、OpenGL中的三维物体的显示 (一)坐标 系统 在现实世界中,所有的物体都具有三维特征,但计算机本身只能处理数字,显示二维的图形,将三维物体及二维 数据 联系在一起的唯一纽带就是坐标。 为了使被显示的三维物体数字化,要在被显示的物体所在的 空间 中定义一个坐标系。这个坐标系的长度单位和坐标轴的方向要适合对被显示物体的描述,这个坐标系称为世界坐标系。世界坐标系是始终固定不变的。 OpenGL还定义了局部坐标系的概念,所谓局部坐标系,也就是坐标系以物体的中心为坐标原点,物体的旋转或平移等操作都是围绕局部坐标系进行的,这时

[转] 理解矩阵

孤人 提交于 2019-12-03 00:08:41
from: https://www.cnblogs.com/marsggbo/p/10144060.html 线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙。比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个“前无古人,后无来者”的古怪概念,然后用逆序数给出行列式的一个极不直观的定义,接着是一些简直犯傻的行列式性质和习题——把这行乘一个系数加到另一行上,再把那一列减过来,折腾得那叫一个热闹,可就是压根看不出这个东西有嘛用。大多数像我一样资质平庸的学生到这里就有点犯晕:连这是个什么东西都模模糊糊的,就开始钻火圈表演了,这未免太“无厘头”了吧!于是开始有人逃课,更多的人开始抄作业。这下就中招了,因为其后的发展可以用一句峰回路转来形容,紧跟着这个无厘头的行列式的,是一个同样无厘头但是伟大的无以复加的家伙的出场——矩阵来了!多年之后,我才明白,当老师犯傻似地用中括号把一堆傻了吧叽的数括起来,并且不紧不慢地说:“这个东西叫做矩阵”的时候,我的数学生涯掀开了何等悲壮辛酸、惨绝人寰的一幕!自那以后,在几乎所有跟“学问”二字稍微沾点边的东西里,矩阵这个家伙从不缺席。对于我这个没能一次搞定线性代数的笨蛋来说,矩阵老大的不请自来每每搞得我灰头土脸,头破血流。长期以来,我在阅读中一见矩阵,就如同阿Q见到了假洋鬼子

左手坐标系和右手坐标系

╄→尐↘猪︶ㄣ 提交于 2019-11-29 19:28:28
左手坐标系 伸出左手,让拇指和食指成“L”形,大拇指向右,食指向上。其余的手指指向前方。这样就建立了一个左手坐标系。拇指、食指和其余手指分别代表x,y,z轴的正方向。判断方法:在空间直角坐标系中,让左手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指能指向z轴的正方向,则称这个坐标系为左手直角坐标系.反之则是右手直角坐标系。 右手坐标系 右手坐标系在我们以前初中高中学几何的时候也经常用到。在三维坐标系中,Z轴的正轴方向是根据右手定则确定的。右手定则也决定三维空间中任一坐标轴的正旋转方向。要标注X、Y和Z轴的正轴方向,就将右手背对着屏幕放置,拇指即指向X轴的正方向。伸出食指和中指,如右图所示,食指指向Y轴的正方向,中指所指示的方向即是Z轴的正方向。要确定轴的正旋转方向,如下图所示,用右手的大拇指指向轴的正方向,弯曲手指。那么手指所指示的方向即是轴的正旋转方向。 Not signed i 来源: CSDN 作者: 做一只会飞的猪 链接: https://blog.csdn.net/beihuanlihe130/article/details/52296044

地理坐标系与投影坐标系

江枫思渺然 提交于 2019-11-29 19:28:03
地理坐标系与投影坐标系 1.基本概念 地理坐标系:为球面坐标。 参考平面地是椭球面,坐标单位:经纬度; 投影坐标系:为平面坐标。参考平面地是水平面,坐标单位:米、千米等; 地理坐标转换到投影坐标的过程可理解为投影。(投影:将不规则的地球曲面转换为平面) 2、地理坐标系 2.1 地球的三级逼近 2.1.1大地水准面 地球的自然表面有高山也有洼地,是崎岖不平的,我们要使用数学法则来描述他,就必须找到一个相对规则的数学面。 大地水准面是地球表面的第一级逼近。假设当海水处于完全静止的平衡状态时,从海平面延伸到所有大陆下部,而与地球重力方向处处正交的一个连续、闭合的曲面,这就是大地水准面。 2.1.2地球椭球体 大地水准面可以近似成一个规则成椭球体,但并不是完全规则,其形状接近一个扁率极小的椭圆绕短轴旋转所形成的规则椭球体,这个椭球体称为地球椭球体。它是地球的第二级逼近。 下面列举了一些常见椭球体的参数。我国1952年以前采用海福特椭球体,从1953年起采用克拉索夫斯基椭球体。 1978年我国决定采用新椭球体GRS(1975),并以此建立了我国新的、独立的大地坐标系,对应ArcGIS里面的Xian_1980椭球体。从1980年开始采用新椭球体GRS(1980),这个椭球体参数与ArcGIS中的CGCS2000椭球体相同。 2.1.3大地基准面 确定了一个规则的椭球表面以后

FME 坐标系使用(三) ----关于坐标系变换

白昼怎懂夜的黑 提交于 2019-11-29 19:23:00
原文发布时间:2010-08-17 作者:乱马 对于 FME 进行坐标系变换,涉及两种不同的变换,一个是基准面( Datum )发生变换,另一个基准面不发生变换。本文对第一种变换进行描述。 对于基准面发生变换的坐标系变换,在 FME Workbench 中使用 Reprojector 函数,在该函数中要分别选择源数据坐标系和目标数据坐标系,确定后,即可进行坐标系的变换。 或者对于源数据和目标数据,分别设置坐标系,FME在进行数据转换的时候,就可以自动进行坐标系的变换。 但是如何设置一个用户自定义的坐标系,能在 FME 的坐标系仓库( Coordinate System Gallery )中选择,然后进行坐标系变换呢。 通常,定义一个坐标系是确定这个坐标系的几个参数 ---- 椭球体参数,基准面参数以及投影参数。对于 FME 的坐标系参数定义涉及两个文件, LocalCoordSysDefs.fme 和 MyCoordSysDefs.fme 。这两个文件都位于 FME 安装目录下的子目录 Reproject 下。在 LocalCoordSysDefs.fme 文件中定义基本的参数 ---- 椭球体参数和基准面参数。在文件 MyCoordSysDefs.fme 中定义投影参数。 椭球体的定义: ELLIPSOID_DEF <ellipsoidName> \ DESC_NM

【计算机视觉】相机成像模型四个坐标系的转换(世界坐标系,相机坐标系,图像坐标系,像素坐标系)

為{幸葍}努か 提交于 2019-11-29 19:22:04
世界坐标系,相机坐标系,图像坐标系,图像像素坐标系这四个坐标系的转换实质就是刚体变换、透视投影和数字化图像这几个成像里的步骤。 一、世界坐标系到相机坐标系 世界坐标系,也称为测量坐标系,它是一个三维直角坐标系(xw,yw,zw)。在世界坐标系中可以描述相机和待测物体的空间位置。世界坐标系的位置根据实际情况自行确定。 相机坐标系也是一个三维直角坐标系(xc,yc,zc)。相机坐标系的原点是镜头的光心,x、y轴分别与相面的两边平行,z轴为镜头的光轴,与像平面垂直。 世界坐标系到相机坐标系的变换是刚体变换,也就是只改变物体的空间位置(平移)和朝向(旋转),而不改变物体的形状。用旋转矩阵R和平移向量t可以表示这种变换。 在齐次坐标下,旋转矩阵R是正交矩阵,可通过Rodrigues变换转换为只有三个独立变量的旋转向量。因此刚体变换用6个参数就可以表示(3个旋转向量,3个平移向量),这6个参数就是相机的外参。相机外参决定了空间点从世界坐标系到相机坐标系的变换。 齐次坐标下可表示为 二、相机坐标系到图像坐标系 从相机坐标系到图像坐标系,属于透视投影关系,从3D转换到2D。 图像坐标系也叫平面坐标系,用物理单位表示像素的位置,单位是mm。坐标原点为摄像机光轴与图像坐标系的交点位置。 根据相似三角原理 在齐次坐标下表示为 这一步完成了相机坐标系到理想的图像坐标系的转换