tensorflow

“zsh: illegal hardware instruction python” when installing Tensorflow on macbook pro M1

自闭症网瘾萝莉.ら 提交于 2021-02-16 18:06:39
问题 I'm trying to get tensorflow working on my MacBook pro M1. However, I keep getting the following error when trying to import: zsh: illegal hardware instruction python I have downloaded and installed tensorflow via this link. These were my installation steps: install a venv: python3 -m venv venv . drag the install_venv.sh (which is located within the downloaded folder) file to the terminal, add -p at the end. select the directory of the venv as the location where tensorflow should be installed

“zsh: illegal hardware instruction python” when installing Tensorflow on macbook pro M1

梦想的初衷 提交于 2021-02-16 18:06:33
问题 I'm trying to get tensorflow working on my MacBook pro M1. However, I keep getting the following error when trying to import: zsh: illegal hardware instruction python I have downloaded and installed tensorflow via this link. These were my installation steps: install a venv: python3 -m venv venv . drag the install_venv.sh (which is located within the downloaded folder) file to the terminal, add -p at the end. select the directory of the venv as the location where tensorflow should be installed

“zsh: illegal hardware instruction python” when installing Tensorflow on macbook pro M1

时光毁灭记忆、已成空白 提交于 2021-02-16 18:06:27
问题 I'm trying to get tensorflow working on my MacBook pro M1. However, I keep getting the following error when trying to import: zsh: illegal hardware instruction python I have downloaded and installed tensorflow via this link. These were my installation steps: install a venv: python3 -m venv venv . drag the install_venv.sh (which is located within the downloaded folder) file to the terminal, add -p at the end. select the directory of the venv as the location where tensorflow should be installed

Use scipy.integrate.quad with Tensorflow

ぐ巨炮叔叔 提交于 2021-02-16 15:30:11
问题 I am trying to use scipy.integrate.quad with Tensorflow as following. time and Lambda are two Tensors with shape (None, 1). def f_t(self, time, Lambda): h = Lambda * self.shape * time ** (self.shape - 1) S = tf.exp(-1 * Lambda * time ** self.shape) return h * S def left_censoring(self, time, Lambda): return tf.map_fn(lambda x: integrate.quad(self.f_t, 0.0, x[0], # it is not a float before evaluation args=(x[1],)), tf.concat([time, Lambda], 1)) However, I get an error as below: File "J:

Macro metrics (recall/F1…) for multiclass CNN

拈花ヽ惹草 提交于 2021-02-16 13:20:29
问题 I use CNN for image classification on unbalance dataset. I'm totaly new with tensorflow backend. It's multiclass problem (not multilabel) and I have 16 classes. Class are one hot encoded. I want to compute MACRO metrics for each epoch: F1, precision and recall. I found a code to print those Macro metrics but it's only work on validation set From: https://medium.com/@thongonary/how-to-compute-f1-score-for-each-epoch-in-keras-a1acd17715a2 class Metrics(Callback): def on_train_begin(self, logs={

TensorFlow中最大的30个机器学习数据集

為{幸葍}努か 提交于 2021-02-16 10:12:50
点击上方“AI公园”,关注公众号,选择加“星标“或“置顶” 作者: Limarc Ambalina 编译:ronghuaiyang 导读 包括图像,视频,音频,文本,非常的全。 largest tensorflow datasets for machine learning 由谷歌Brain的研究人员创建的TensorFlow是机器学习和数据科学领域最大的开源数据库之一。它是一个端到端的平台,适用于初学者和有经验的数据科学家。TensorFlow库包括工具、预训练模型、机器学习指南,以及开放数据集的语料库。为了帮助你找到所需的训练数据,本文将简要介绍一些用于机器学习的最大的TensorFlow数据集。我们已经将下面的列表分为图像、视频、音频和文本数据集。 图像数据集 1、 CelebA : 最大的公开的人脸图像数据集之一,名人脸属性数据集(CelebA)包含超过20万名名人的图像。 celebrity face images dataset 每幅图像包含5个面部特征点和40个二值属性标注。 2、 Downsampled Imagenet :该数据集用于密度估计和生成建模任务。它包含130多万幅物体、场景、车辆、人物等图像。这些图像有两种分辨率:32 x 32和64 x 64。 3、 Lsun – Lsun是一个大型图像数据集,用于帮助训练模型理解场景。数据集包含超过900万张图像

为你的IDEA集成AI,解放双手,我推荐这款神器!

非 Y 不嫁゛ 提交于 2021-02-15 20:23:47
我们平时写代码的时候,多少都会依赖编辑器的代码补全功能,敲几个字母就能补全一个词。可是这么多年过去了,语言升级了很多次,而代码提示却没有升级,还是只能限定在一个词,毫无意义地按照字典表顺序排列,这对于编程来讲,又有什么价值呢? 传统的代码补全,一大篇毫无意义的推荐 试想一下,如果用 【AI】 来做代码提示,按照上下文和以往代码用深度学习技术分析之后,在个人编程的时候,根据个人编程习惯做推荐,把编码常用的结果前置,紧接着给出更长甚至补完一整行的推荐结果,对于编程就非常有价值了。 用AI做代码补全,根据使用情况智能排序,甚至补完整个语 近期,一款AI代码补全工具—— aiXcoder (官网: www.aixcoder.com ),在程序员间掀起了波澜,很多群和朋友圈都在寻求共同编程好友一起领取官方专业版。深度了解一下,aixcoder是 国内硅心科技 开发,安装使用傻瓜式操作,推荐效果秒杀一切代码提示工具。 于是我测试了一下这个号称 【帮助程序员节省时间】 的工具,看看AI编程进展到什么程度,是如何帮助程序员节省时间。 本着 【独立客观第三方】 的原则,挑选第三方的代码进行测试。 既然说可以节省编程时间,从 【键盘按键】 数量的角度进行统计与比较,因为敲击键盘数量越少,从开发的角度越省时间。 【Round One:Tensorflow】

机器学习与TensorFlow的使用

[亡魂溺海] 提交于 2021-02-15 12:13:26
1. minist数据库——一个大型的手写图片数据库 2. 特征、标签、样本 机器学习术语表 3. 模型与训练、神经网络 我们需要选择将要进行训练的模型类型。模型类型极其多,选择理想的类型需要经验。我们选择了一个神经网络来解决鸢尾花问题。 神经网络 可以发现特征与标签之间的复杂关系。神经网络是一个高度结构化的图,其中包含一个或多个 隐藏层 。每个隐藏层都包含一个或多个 神经元 。神经网络存在多个类别。我们将使用 全连接神经网络 ,这意味着一个层中的神经元将从上一层中的每个神经元获取输入。例如,下图显示了包含三个隐藏层的全连接神经网络: 第一个隐藏层包含四个神经元。 第二个隐藏层包含三个神经元。 第三个隐藏层包含两个神经元。 隐藏层和神经元的理想数量取决于问题和数据集。与机器学习的多个方面一样,选择理想的神经网络形状需要一定的知识水平和实验基础。一般来说,增加隐藏层和神经元的数量通常会产生更强大的模型,而这需要更多数据才能有效地进行训练。 4. tensorflow的编程堆栈 Estimator :代表一个完整的模型。Estimator API 提供一些方法来训练模型、判断模型的准确率并生成预测。(估计-模型) 数据集 :构建数据输入管道。Dataset API 提供一些方法来加载和操作数据,并将数据馈送到您的模型中。Dataset API 与 Estimator API 合作无间。

Why is Tensorflow not recognizing my GPU after conda install?

邮差的信 提交于 2021-02-15 11:50:49
问题 I am new to deep learning and I have been trying to install tensorflow-gpu version in my pc in vain for the last 2 days. I avoided installing CUDA and cuDNN drivers since several forums online don't recommend it due to numerous compatibility issues. Since I was already using the conda distribution of python before, I went for the conda install -c anaconda tensorflow-gpu as written in their official website here: https://anaconda.org/anaconda/tensorflow-gpu . However even after installing the

Why is Tensorflow not recognizing my GPU after conda install?

夙愿已清 提交于 2021-02-15 11:48:47
问题 I am new to deep learning and I have been trying to install tensorflow-gpu version in my pc in vain for the last 2 days. I avoided installing CUDA and cuDNN drivers since several forums online don't recommend it due to numerous compatibility issues. Since I was already using the conda distribution of python before, I went for the conda install -c anaconda tensorflow-gpu as written in their official website here: https://anaconda.org/anaconda/tensorflow-gpu . However even after installing the