零基础的程序员们,关于大数据挖掘的知识点,都在这里了
下面是一些关于 大数据 挖掘的知识点,今天和大家一起来学习一下。 1. 数据、信息和知识是广义数据表现的不同形式。 2. 主要知识模式类型有:广义知识,关联知识,类知识,预测型知识,特异型知识 3. web挖掘研究的主要流派有:Web结构挖掘、Web使用挖掘、Web内容挖掘 4. 一般地说,KDD是一个多步骤的处理过程,一般分为问题定义、数据抽取、数据预处理、.数据挖掘以及模式评估等基本阶段。 5. 数据库中的知识发现处理过程模型有:阶梯处理过程模型,螺旋处理过程模型,以用户为中心的处理结构模型,联机KDD模型,支持多数据源多知识模式的KDD处理模型 6. 粗略地说,知识发现软件或工具的发展经历了独立的知识发现软件、横向的知识发现工具集和纵向的知识发现解决方案三个主要阶段,其中后面两种反映了目前知识发现软件的两个主要发展方向。 7. 决策树分类模型的建立通常分为两个步骤:决策树生成,决策树修剪。 8. 从使用的主要技术上看,可以把分类方法归结为四种类型: 基于距离的分类方法 决策树分类方法 贝叶斯分类方法 规则归纳方法 9. 关联规则挖掘问题可以划分成两个子问题: 发现频繁项目集:通过用户给定Minsupport ,寻找所有频繁项目集或者最大频繁项目集。 生成关联规则:通过用户给定Minconfidence ,在频繁项目集中,寻找关联规则。 10.