射频信号

GNU Radio: 射频子板

痞子三分冷 提交于 2020-02-10 05:23:59
本文简要介绍 USRP 配套的子板参数信息。 射频子板WBX-40 性能特点 频率覆盖:50 MHz – 2.2GHz 最大信号处理带宽:40MHz 行为描述   WBX-40提供高宽带收发器,可提供高达100mw的功率输出,噪声系数为5 dB。本地振荡器的接收和传输链独立运作,可以为MIMO实现同步。WBX提供40MHz的带宽能力。对于那些要访问频率段在50MHz-2200 MHz范围内的应用 ,是理想的SDR设备,。应用领域包WiFi,WiMAX,S波段收发器和2.4 GHz ISM频段收发器。应用领域包括陆地移动通信,海上和航空波段收音机;手机基站,PC机和GSM多波段收音机;相干多基地雷达;无线传感器网络;广播电视;公共安全管理等。适合应用在USRP N200, USRP N210, USRP X310,USRP X300. 兼容产品   X310, X300; USRP N210, USRP N200; USRP E110, USRP E100; USRP 1 射频子板WBX-120 性能特点 频率覆盖:50 MHz – 2.2GHz 最大信号处理带宽:120MHz 行为描述   WBX-120包含一个全双工宽带收发器,覆盖的频带从50 MHz到2.2 GHz,最高支持120 MHz的瞬时带宽。WBX-120可以服务于各种应用领域,包括公共安全,通讯,业余无线电,和ISM

RFID 射频识别技术 NFC

我怕爱的太早我们不能终老 提交于 2020-02-08 00:11:33
RFID 概述 射频识别,Radio Frequency Identification 无线射频识别,一种通信技术,通过无线电信号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立 机械或 光学接触 一套RFID硬件由 Reader 与 Transponder 组成 NFC 来源: CSDN 作者: CpuCode 链接: https://blog.csdn.net/qq_44226094/article/details/104214145

移动终端处理器构成和基带芯片概述

醉酒当歌 提交于 2020-01-13 20:59:15
(一)移动终端发展 一部手机要实现最主要的功能—打电话发短信,这个手机就要包含下面几个部分:射频部分、基带部分、电源管理、外设、软件等。回想一下移动手机的发展史: 1,功能手机(Feature Phone):仅仅用基带芯片。仅仅能用来打电话、发短信。 2,多媒体手机:使用基带芯片+协处理器加速单元。在功能机的基础上,添加了多媒体功能(如视频、音乐)。MTK就是在多媒体手机时代崛起的。当然要归功于广大”山寨机“。MTK基带芯片中除了CPU以外,还集成了非常多外设控制器。Feature Phone的功能,基本上取决于基带芯片所支持的外设功能。 3。智能手机:採用应用处理器AP+基带处理器CP。AP可看做传统计算机。CP可看做无线modem。 AP、CP间的接口技术有SPI、UART、USB、SDIO、shareMemory等等。AP、CP间的通信可通过传统AT命令、MBIM等进行,完毕通话、短消息、移动上网等功能。 功能手机和智能手机的差别在于:功能机相当于不断添加应用功能的无线通信终端。无操作系统;而智能机相当于添加了无线通信功能的掌上电脑,其软件体系类似于PC软件体系--操作系统+应用软件的组合。智能手机的两大最广的操作系统是Android和IOS系统。 智能机中还会有专门用于图像处理的GPU。且GPU功能会越来越发达,如此我们才干在智能机上看高清电影、玩高画质游戏。

零中频架构,这个帖子讲透了

允我心安 提交于 2019-12-06 15:08:18
零中频(ZIF)架构自无线电初期即已出现。如今,ZIF架构可以在几乎所有消费无线电应用中找到,无论是电视、手机,还是蓝牙技术。ZIF技术取得的最新进步对现有高性能无线电架构形成了挑战,其带来的新产品取得了性能上的突破,能够实现ZIF技术以前望尘莫及的新型应用。本文将探讨ZIF架构的诸多优势,介绍这些优势如何使无线电设计性能达到的新高度。 无线电工程师面临的挑战 不断增多的需求给当今的收发器架构师带来了挑战,因为我们对无线设备和应用的需求呈持续增长之势。结果,消费者需要持续访问更多的带宽。 数年以来,设计师已经从单载波无线电走向多载波无线电技术。当一个频段的频谱被全部占用时,就分配新的频段;目前,必须为40多个无线频段提供服务。由于运营商在多个频段都有频谱,并且这些资源必须协调起来,所以,如今的趋势是走向载波聚合,而载波聚合则会导致多频段无线电。这又会带来更多的无线电,其性能更高,需要更优秀的带外抑制性能,更出色的辐射性能,以及更低的功耗水平。 虽然无线需求在快速增长,但功耗和空间预算并未增长。事实上,在功耗和空间节省需求不断增强的条件下,同时降低碳排放和物理尺寸非常重要。为了实现这些目标,需要从新的视角去认识无线电架构和分区。 集成 为了增加特定设计中的无线电数目,必须减小每件无线电器件的尺寸。传统方法是逐步把更多的设计集成到一片硅片当中。虽然从数字角度来看,这样做可能是合理的

射频电路的原理及应用

非 Y 不嫁゛ 提交于 2019-12-06 11:47:04
什么是射频电路? 射频简称RF,射频就是射频电流,它是一种高频交流变化电磁波的简称。每秒变化小于1000次的交流电称为低频电流,大于1000次的称为高频电流,而射频就是这样一种高频电流。 射频电路指处理信号的电磁波长与电路或器件尺寸处于同一数量级的电路。此时由于器件尺寸和导线尺寸的关系,电路需要用分布参数的相关理论来处理,这类电路都可以认为是射频电路,对其频率没有严格要求,如长距离传输的交流输电线(50或60Hz)有时也要用RF的相关理论来处理。 射频电路的原理及发展 射频电路最主要的应用领域就是无线通信,图1.1为一个典型的无线通信系统的框图,下面以这个系统为例分析射频电路在整个无线通信系统中的作用。 图1.1 典型射频系统方框图 这是一个无线通信收发机(tranceiver)的系统模型,它包含了发射机电路、接收机电路以及通信天线。这个收发机可以应用于个人通信和无线局域网络中。在这个系统中,数字处理部分主要是对数字信号进行处理,包括采样、压缩、编码等;然后通过A/D转换器转换器变成模拟形式进入模拟信号电路单元。 模拟信号电路分为两部分:发射部分和接收部分。 发射部分的主要作用是:数- 模转换输出的低频模拟信号与本地振荡器提供的高频载波经过混频器上变频成射频调制信号,射频信号经过天线辐射到空间中去。接收部分的主要作用是:空间辐射信号经过天线耦合到接收电路中去

中频信号

▼魔方 西西 提交于 2019-12-06 08:01:06
中频信号 射频信号就是高频信号,就是我们所说的电磁波.可以向空间辐射. 视频信号就是图像信号. 中频信号是高频信号经过变频而获得的一种信号.为了使放大器的稳定的工作和减小干扰.一般的接收机都要将高频信号变为中频信号.电视机的图像中频信号是38MHZ.音频的中频信号是6.5MHZ. 中短波收音机的中频信号是465KC 调频收音机的中频是10.7MHZ 射频是指发射频率,因为有些信号本身可能不太适合直接发射出去(频率非法,或信号本身条件不允许)。所以要将信号调制,调制器本身需要一个适合的震荡信号,将原信号加在上面,这个震荡信号叫载波,调制后的载波就包含了原信号的信息,发射出去就叫电波。所以,射频信号就是经过调制的,拥有一定发射频率的电波。也就是说“我要发50M的数据,到天线上发出的信号不是50M的,要经过功率放大,把频率升到6G(这是L波段),在发往卫星,这个6G的电波就是射频信号。” 无线电信号RF(射频)进入天线,转换为IF (中频),再转换为基带(I,Q信号),但仍然是较低的频率。 接收: 射频 -> 中频 -> 基带 发射: 基带 -> 中频 -> 射频 传统接收在射频信号和基带之间的转换分为多步(一下变,二下变)进行,首先:射频和中频之间转换,然后中频和基带间转换。(中间要转就得有滤波,SAW ) 一种新的基于改进PASTd的中频信号盲信噪比估计算法:

详解GSM的基带跳频和射频跳频

﹥>﹥吖頭↗ 提交于 2019-12-05 20:22:44
跳频技术源于军事通信,目的是为了获得较好的保密性和抗干扰能力。跳频分为快速和慢速两种,GSM中的跳频属于慢跳频。 跳频方式从时域概念上分为帧跳频和时隙跳频,从载频实现方式上分为射频跳频和基带跳频。 帧跳频:每个TDMA帧频点变换一次,这种方式下,每一个载频可以看做一个信道,在一个小区中帧跳频时BCCH所在的TRX载频上的TCH不能参与跳频,其它不同的载频应有不同MAIO,它是时隙跳频的特例。 时隙跳频:即每个TDMA帧的每个时隙频点变换一次,时隙跳频时BCCH所在的TRX中的TCH可以参加跳频,但目前只在基带跳频时实现。 射频跳频:TRX的发射TX和接收RX都参与跳频。小区参与跳频频点数可以超过该小区内的TRX数目。 基带跳频:每个发信机工作在固定的频率上,TX不参与跳频,通过基带信号的切换来实现发射的跳频,但其接收必须参与跳频。因此小区跳频频点数不可能大于该小区的TRX数。 就ERICSSON的设备来说,有X总线的为基带跳频;基带跳频的频点数与载波数是一样的;而综合跳频(射频跳频)的频点数一般比载波数多。移动一般为基带跳频,联通一般用的是综合跳频。联通的可用频点少,在满足容量的基础上面,必须采用综合跳频来降低频点干扰咯。 基带跳频的技术难点在于如何实现信息数据的高速交换,满足217跳/秒的跳频速度及271kbits/s的数据传输速率。 考虑以无线接口时隙为基础进行数据的交换

射频电路的原理及应用

心不动则不痛 提交于 2019-12-05 19:11:04
什么是射频电路? 射频简称RF,射频就是射频电流,它是一种高频交流变化电磁波的简称。每秒变化小于1000次的交流电称为低频电流,大于1000次的称为高频电流,而射频就是这样一种高频电流。 射频电路指处理信号的电磁波长与电路或器件尺寸处于同一数量级的电路。此时由于器件尺寸和导线尺寸的关系,电路需要用分布参数的相关理论来处理,这类电路都可以认为是射频电路,对其频率没有严格要求,如长距离传输的交流输电线(50或60Hz)有时也要用RF的相关理论来处理。 射频电路的原理及发展 射频电路最主要的应用领域就是无线通信,图1.1为一个典型的无线通信系统的框图,下面以这个系统为例分析射频电路在整个无线通信系统中的作用。 图1.1 典型射频系统方框图 这是一个无线通信收发机(tranceiver)的系统模型,它包含了发射机电路、接收机电路以及通信天线。这个收发机可以应用于个人通信和无线局域网络中。在这个系统中,数字处理部分主要是对数字信号进行处理,包括采样、压缩、编码等;然后通过A/D转换器转换器变成模拟形式进入模拟信号电路单元。 模拟信号电路分为两部分:发射部分和接收部分。 发射部分的主要作用是:数- 模转换输出的低频模拟信号与本地振荡器提供的高频载波经过混频器上变频成射频调制信号,射频信号经过天线辐射到空间中去。接收部分的主要作用是:空间辐射信号经过天线耦合到接收电路中去

射频芯片,最全介绍!

六月ゝ 毕业季﹏ 提交于 2019-12-05 16:40:33
一部可支持打电话、发短信、网络服务、APP应用的手机,通常包含五个部分:射频、基带、电源管理、外设、软件。 射频: 一般是信息发送和接收的部分; 基带: 一般是信息处理的部分; 电源管理: 一般是节电的部分,由于手机是能源有限的设备,所以电源管理十分重要; 外设: 一般包括LCD,键盘,机壳等; 软件: 一般包括系统、驱动、中间件、应用。 在手机终端中,最重要的核心就是射频芯片和基带芯片。射频芯片负责射频收发、频率合成、功率放大;基带芯片负责信号处理和协议处理。那么射频芯片和基带芯片是什么关系? 射频芯片和基带芯片的关系 射频(Radio Frenquency)和基带(Base Band)皆来自英文直译。其中射频最早的应用就是Radio——无线广播(FM/AM),迄今为止这仍是射频技术乃至无线电领域最经典的应用。 基带则是band中心点在0Hz的信号,所以基带就是最基础的信号。有人也把基带叫做“未调制信号”,曾经这个概念是对的,例如AM为调制信号(无需调制,接收后即可通过发声元器件读取内容)。 但对于现代通信领域而言,基带信号通常都是指经过数字调制的,频谱中心点在0Hz的信号。而且没有明确的概念表明基带必须是模拟或者数字的,这完全看具体的实现机制。 言归正传,基带芯片可以认为是包括调制解调器,但不止于调制解调器,还包括信道编解码、信源编解码,以及一些信令处理。而射频芯片

射频电路的原理及应用

夙愿已清 提交于 2019-12-05 09:58:47
什么是射频电路? 射频简称RF,射频就是射频电流,它是一种高频交流变化电磁波的简称。每秒变化小于1000次的交流电称为低频电流,大于1000次的称为高频电流,而射频就是这样一种高频电流。 射频电路指处理信号的电磁波长与电路或器件尺寸处于同一数量级的电路。此时由于器件尺寸和导线尺寸的关系,电路需要用分布参数的相关理论来处理,这类电路都可以认为是射频电路,对其频率没有严格要求,如长距离传输的交流输电线(50或60Hz)有时也要用RF的相关理论来处理。 射频电路的原理及发展 射频电路最主要的应用领域就是无线通信,图1.1为一个典型的无线通信系统的框图,下面以这个系统为例分析射频电路在整个无线通信系统中的作用。 图1.1 典型射频系统方框图 这是一个无线通信收发机(tranceiver)的系统模型,它包含了发射机电路、接收机电路以及通信天线。这个收发机可以应用于个人通信和无线局域网络中。在这个系统中,数字处理部分主要是对数字信号进行处理,包括采样、压缩、编码等;然后通过A/D转换器转换器变成模拟形式进入模拟信号电路单元。 模拟信号电路分为两部分:发射部分和接收部分。 发射部分的主要作用是:数- 模转换输出的低频模拟信号与本地振荡器提供的高频载波经过混频器上变频成射频调制信号,射频信号经过天线辐射到空间中去。接收部分的主要作用是:空间辐射信号经过天线耦合到接收电路中去