神经网络

2020还是AI最火?推荐几本深度学习的书籍帮你入门!

梦想的初衷 提交于 2020-08-13 03:10:25
​ 最近公司里有一些关于算法方面的工作,想到能学点有趣的新技术,于是毫不犹豫地参加了学习,机器学习,深度学习,离我们Java工程师到底远不远,说近不近,说远也不远,我们甚至可以在没有太多机器学习理论的基础时,去学习一些深度学习的简单应用,至少拿到demo过来跑一下还是没什么问题的。 深度学习到底是啥,简单来说,深度学习是机器学习领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI, Artificial Intelligence)。 深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。 深度学习在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。 今天我们就来推荐几本我们公司几位算法大佬推荐的深度学习图书,虽然不能保证你们看得懂,但是也一定是优中选优,如果你对机器学习有所了解,想学习一些深度学习的知识,也不妨看看这一份书单。 深度学习系列书单 ​

初始TextCNN及keras实现

馋奶兔 提交于 2020-08-13 03:04:31
1、初始TextCNN CNN可参考之前的文章: https://www. zhihu.com/people/xianya ng94 最近在做寿命预测问题的研究中,拿到的数据为一维的数据,传统的数据预处理方法主要有PCA、LDA、LLE等,考虑到应用CNN进行特征的提取,从而提高预测的精度。但之前了解到的CNN多应用于图像处理,其输入数据为二维或者多维的数据,因此进一步了解学习应用于文本分类的TextCNN。下一篇文章会通过期刊论文来介绍几篇CNN的具体应用实例,主要介绍模型的网络结构。 TextCNN模型是Yoon Kim在2014年 《Convolutional Neural Networks for Sentence Classification》中提出的,利用卷积神经网络(CNN)来对处理文本分类问题(NLP)。该算法利用多个不同大小的kernel来提取句子中的关键信息,从而能更加高效的提取重要特征,实现较好的分类效果。 2、TextCNN结构 该模型的结构如下图:(下图引用于原文) TextCNN的详细过程见下:(以一句话为例) (1)输入:自然语言输入为一句话,例如【wait for the video and don't rent it】。 (2)数据预处理:首先将一句话拆分为多个词,例如将该句话分为9个词语,分别为【wait, for, the, video,

谷歌刷新机器学习世界纪录!2 分钟搞定 ImageNet 训练

二次信任 提交于 2020-08-13 02:52:32
AI 前线导读 :随着技术、算力的发展,在 ImageNet 上训练 ResNet-50 的速度被不断刷新。2018 年 7 月,腾讯机智机器学习平台团队在 ImageNet 数据集上仅用 6.6 分钟就训练好 ResNet-50,创造了 AI 训练世界纪录;一周前,壕无人性的索尼用 2176 块 V100 GPU 将这一纪录缩短到了 224 秒;如今,这一纪录再次被谷歌刷新…… 深度学习非常依赖于硬件条件,它是一个计算密集型的任务。硬件供应商通过在大型计算集群中部署更快的加速器来做出更快的相应。在 petaFLOPS(运算能力单位,每秒千万亿次浮点数运算)规模的设备上训练深度学习模型需要同时面临算法和系统软件两方面的挑战。Google 于近日推出了一种大规模计算集群的图像分类人物训练解决方案,相关论文发表于 Arxiv: Image Classification at Supercomputer Scale 。本文的作者使用 Google TPU v3 Pod 训练 ResNet-50,在识别率没有降低的情况下,仅使用了 2.2 分钟的时间。 背景 深度神经网络的成功应用与发展离不开疯狂增长的算力,在许多领域,深度学习的发展可以说是由硬件驱动的。在深度网络的训练过程中,最关键的部分就是使用随机梯度下降算法(SGD)优化网络权重。通常情况下,模型需要使用 SGD

循环神经网络(RNN)简易教程

房东的猫 提交于 2020-08-13 01:08:33
作者|Renu Khandelwal 编译|VK 来源|Medium 我们从以下问题开始 循环神经网络能解决人工神经网络和卷积神经网络存在的问题。 在哪里可以使用RNN? RNN是什么以及它是如何工作的? 挑战RNN的消梯度失和梯度爆炸 LSTM和GRU如何解决这些挑战 假设我们正在写一条信息“Let’s meet for___”,我们需要预测下一个单词是什么。下一个词可以是午餐、晚餐、早餐或咖啡。我们更容易根据上下文作出推论。假设我们知道我们是在下午开会,并且这些信息一直存在于我们的记忆中,那么我们就可以很容易地预测我们可能会在午餐时见面。 当我们需要处理需要在多个时间步上的序列数据时,我们使用循环神经网络(RNN) 传统的神经网络和CNN需要一个固定的输入向量,在固定的层集上应用激活函数产生固定大小的输出。 例如,我们使用128×128大小的向量的输入图像来预测狗、猫或汽车的图像。我们不能用可变大小的图像来做预测 现在,如果我们需要对依赖于先前输入状态(如消息)的序列数据进行操作,或者序列数据可以在输入或输出中,或者同时在输入和输出中,而这正是我们使用RNNs的地方,该怎么办。 在RNN中,我们共享权重并将输出反馈给循环输入,这种循环公式有助于处理序列数据。 RNN利用连续的数据来推断谁在说话,说什么,下一个单词可能是什么等等。 RNN是一种神经网络,具有循环来保存信息

Pytorch实践中文教程(1)

≯℡__Kan透↙ 提交于 2020-08-13 00:55:37
前言 PyTorch 是一个基于Torch框架的开源Python机器学习库,用于NLP,CV等深度学习应用。它的开发人员是 Facebookd的人工智能小组,它不仅可以利用GPU加速,同时还实现了动态神经网络,这点和现在流行的主流框架如TensorFlow不同。 PyTorch同时还有两个高级功能: 张量计算(如Numpy) 和自动求导。 除了Facebook之外,Twitter、GMU和Salesforce等机构也都采用了PyTorch。 TensorFlow和Caffe都是命令式的静态编程语言,,首先必须构建一个神经网络,在训练过程中结构不会发生变化,如果想要改 变网络的结构,就必须从头开始。但是对于PyTorch,通过 反向求导技术,可以让你任意实时改变神经网络。这一灵活 是PyTorch对比TensorFlow的最大优势。 另外,PyTorch的代码对比TensorFlow而言,更加简洁直观,底层代码也更容易看懂,这对于使用 它并且计划理解底层得人是一件特别棒的事情。 所以,总结一下PyTorch的优点: 支持调用GPU进行运算 , 支持动态神经网络 , 底层代码易于理解 , 自定义扩展 当然,一枚硬币有两面,PyTorch也不例外,对比TensorFlow,其在功能全面性上差强人意,目前,PyTorch还不支持快速傅里叶、沿维翻转张量和检查无穷与非数值张量;针对移动 端

机器学习是统计学的新瓶装旧酒?

给你一囗甜甜゛ 提交于 2020-08-13 00:06:40
最近,社交媒体上疯传一张表情包(如下图)。随着深度学习的炒作开始消退,看到这张图的人将会心一笑。“机器学习真的没什么好让人兴奋的”或者“它只是对古老统计学的改进”这类情绪越来越普遍。但问题是,这不是真的。 我知道,成为热情过度、沉迷于炒作的深度学习布道师可不是件时髦的事。那些2013年还把深度学习奉为神祗的机器学习专家,现在提到这个词时只是带着一丝懊恼,他们现在更倾向于对现代神经网络进行轻描淡写,以免人们仍然认为 import keras 可以解决一切问题,并认为他们在竞争中仍有拥有巨大的优势。 正如Yann LeCun所说的那样,深度学习作为一个流行词确有被夸大之嫌,但这种态度的转变导致了人们对人工智能的进步、未来和作用产生了不正常的怀疑。目前,关于人工智能寒冬即将到来的言论甚嚣尘上,人们预计,人工智能研究将停滞多年,就像在过去几十年中所发生的那样。 谈论人工智能寒冬将至的文章和传言AGI将迎来爆发的文章一样多。 然而,这篇文章的目的不是为了反驳AI寒冬将来的观点,也不是为了比较某个学术团体比另一个对深度学习具有更深刻的见解。相反,我是想要说明真实的情况,这一领域的发展已经超出了大型计算机和更好数据集的范畴,机器学习(以及最近在深度神经网络方面取得的成功及相关成果)代表了世界技术进步的最前沿。 机器学习!=统计学 “说到融资,人工智能。说到招聘,机器学习。说到应用,逻辑回归。”

下载inception v3 google训练好的模型并解压08-3

偶尔善良 提交于 2020-08-13 00:02:35
import tensorflow as tf import os import tarfile import requests # 模型下载地址 inception_pretrain_model_url= ' http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz ' # 模型存放地址 inception_pretrain_model_dir= " inception_model " if not os.path.exists(inception_pretrain_model_dir): os.makedirs(inception_pretrain_model_dir) # 获取文件名以及文件路径 filename=inception_pretrain_model_url.split( ' / ' )[-1 ] filepath = os.path.join(inception_pretrain_model_dir, filename) # 下载模型 if not os.path.exists(filepath): print ( " download: " , filename) r =requests.get(inception_pretrain_model_url,

人工智能中小样本问题相关的系列模型演变及学习笔记(四):知识蒸馏、增量学习

隐身守侯 提交于 2020-08-12 21:04:33
【说在前面】本人博客新手一枚,象牙塔的老白,职业场的小白。以下内容仅为个人见解,欢迎批评指正,不喜勿喷![握手][握手] 【再啰嗦一下】本文衔接上两个随笔: 人工智能中小样本问题相关的系列模型演变及学习笔记(一):元学习、小样本学习 【再啰嗦一下】本文衔接上两个随笔: 人工智能中小样本问题相关的系列模型演变及学习笔记(二):生成对抗网络 GAN 【再啰嗦一下】本文衔接上两个随笔: 人工智能中小样本问题相关的系列模型演变及学习笔记(三):迁移学习 一、知识蒸馏综述 知识蒸馏被广泛的用于模型压缩和迁移学习当中。 本文主要参考:模型压缩中知识蒸馏技术原理及其发展现状和展望 1. 基本概念 知识蒸馏可以将一个网络的知识转移到另一个网络,两个网络可以是同构或者异构。做法是先训练一个teacher网络,然后使用这个teacher网络的输出和数据的真实标签去训练student网络。 可以用来将网络从大网络转化成一个小网络,并保留接近于大网络的性能。 可以将多个网络的学到的知识转移到一个网络中,使得单个网络的性能接近emsemble的结果。 2. 知识蒸馏的主要算法 知识蒸馏是对模型的能力进行迁移,根据迁移的方法不同可以简单分为基于目标驱动的算法、基于特征匹配的算法两个大的方向。 2.1 知识蒸馏基本框架 Hinton最早在文章“Distilling the knowledge in a

谷歌AutoML新进展,进化算法加持,仅用数学运算自动找出ML算法

送分小仙女□ 提交于 2020-08-12 19:55:50
      仅使用基础数学运算就能自动搜索机器学习算法?谷歌 Quoc V. Le 等人提出了 AutoML-Zero 方法。   AutoML-Zero 旨在通过从空程序或随机程序开始,仅使用基础数学运算,来自动发现能够解决机器学习任务的计算机程序。其目标是同时搜索 ML 算法的所有属性,包括模型结构和学习策略,同时将人类偏见最小化。   近来,机器学习(ML)取得了显著的成功,这要归功于深度神经网络等 ML 算法。与此同时,这一领域研究中遇到的困难又催生了 AutoML,AutoML 旨在实现 ML 算法的自动化设计。   目前,AutoML 主要通过结合复杂的手动设计组件来开发解决方案。神经架构搜索就是一个典型的示例,在这个子域中,研究人员基于复杂层(如卷积、批归一化和 dropout)来自动构建神经网络。   在 AutoML 中使用这些手动设计组件的另一种方法是从零开始搜索完整的算法。这种方法具有一定的难度,因为它需要探索大型且稀疏的搜索空间。但同时,这种方法也具有巨大的潜在益处,它不会偏向于我们已经了解的东西,并且有可能发现新的、更好的 ML 架构。   从零开始学习算法的早期研究主要聚焦算法的一个方面(如学习规则),以减少搜索空间和计算量。但自 20 世纪 90 年代后这类研究逐渐冷门,直到现在才重新得到重视。   2018 年 3 月,谷歌大脑团队即进行相关研究

GAITC专题论坛丨脑科学与人工智能融合下的新机遇

ぐ巨炮叔叔 提交于 2020-08-12 18:50:53
     2020全球人工智能技术大会将于7月25-26日登陆杭州未来科技城。除了令人瞩目的大会主旨论坛,同期举行的20场专题论坛嘉宾层次高、主题范围广,聚焦模式识别、脑科学与人工智能等人工智能多个热门领域,内容精彩纷呈,观点将极具创见和现实针对性。   脑是人体最复杂的器官,它可以主导人类的一切行为,人类长期以来希望揭开脑的奥秘,但至今仍有大量难题需要破解。7月26日上午,由中国科学院自动化研究所研究员、欧洲科学院外籍院士、IEEE/AIMBE Fellow蒋田仔,中国科学技术大学信息与智能学部部长、教授、IEEE Fellow吴枫担任论坛主席的 脑科学与人工智能专题论坛 将拉开帷幕。脑科学与人工智能从交叉到深度融合,将如何引领新的技术革命?请提前锁定本场专题论坛! 大会官网   扫码访问大会官网,获取最新会议动态   加入2020GAITC交流群,了解更多会议精彩内容 论坛主席       蒋田仔 中国科学院自动化研究所研究员    欧洲科学院外籍院士    IEEE/AIMBE Fellow   脑网络组研究中心主任,脑网络组北京市重点实验室主任,国家杰出青年基金获得者,长江学者特聘教授,973项目首席科学家。现任IEEE Transactions on Cognitive and Developmental Systems等多种国际刊物编委,北京脑网络组与类脑智能学会理事长