Ridge-regression model: glmnet
问题 Fitting a linear-regression model using least squares on my training dataset works fine. library(Matrix) library(tm) library(glmnet) library(e1071) library(SparseM) library(ggplot2) trainingData <- read.csv("train.csv", stringsAsFactors=FALSE,sep=",", header = FALSE) testingData <- read.csv("test.csv",sep=",", stringsAsFactors=FALSE, header = FALSE) lm.fit = lm(as.factor(V42)~ ., data = trainingData) linearMPrediction = predict(lm.fit,newdata = testingData, se.fit = TRUE) mean(