regression model evaluation using scikit-learn
问题 I am doing regression with sklearn and use random grid search to evaluate different parameters. Here is a toy example: from sklearn.datasets import make_regression from sklearn.metrics import mean_squared_error, make_scorer from scipy.stats import randint as sp_randint from sklearn.ensemble import ExtraTreesRegressor from sklearn.cross_validation import LeaveOneOut from sklearn.grid_search import GridSearchCV, RandomizedSearchCV X, y = make_regression(n_samples=10, n_features=10, n