SpringCloud入门(十一):Sleuth 与 Zipkin分布式链路跟踪
现今业界分布式服务跟踪的理论基础主要来自于 Google 的一篇论文《Dapper, a Large-Scale Distributed Systems Tracing Infrastructure》,使用最为广泛的开源实现是 Twitter 的 Zipkin,为了实现平台无关、厂商无关的分布式服务跟踪,CNCF 发布了布式服务跟踪标准 Open Tracing。国内,淘宝的 “鹰眼”、京东的 “Hydra”、大众点评的 “CAT”、新浪的 “Watchman”、唯品会的 “Microscope”、窝窝网的 “Tracing” 都是这样的系统。 一个分布式服务跟踪系统主要由三部分构成:数据收集、数据存储、数据展示。根据系统大小不同,每一部分的结构又有一定变化。譬如,对于大规模分布式系统,数据存储可分为实时数据和全量数据两部分,实时数据用于故障排查(Trouble Shooting),全量数据用于系统优化;数据收集除了支持平台无关和开发语言无关系统的数据收集,还包括异步数据收集(需要跟踪队列中的消息,保证调用的连贯性),以及确保更小的侵入性;数据展示又涉及到数据挖掘和分析。虽然每一部分都可能变得很复杂,但基本原理都类似。 服务追踪的追踪单元是从客户发起请求(request)抵达被追踪系统的边界开始,到被追踪系统向客户返回响应(response)为止的过程,称为一个