Focal Loss 损失函数简述
Focal Loss 摘要 Focal Loss 目标是解决样本类别不平衡 以及 样本分类难度不平衡等问题 ,如目标检测中大量简单的background,很少量较难的foreground样本。 Focal Loss通过修改交叉熵函数,通过增加类别权重 \(\alpha\) 和 样本难度权重调因子(modulating factor) \((1-p_t)^\gamma\) ,来减缓上述问题,提升模型精确。 一、技术背景 我们知道object detection的算法主要可以分为两大类:two-stage detector和one-stage detector。前者是指类似Faster RCNN,RFCN这样需要region proposal的检测算法,这类算法可以达到很高的准确率,但是速度较慢。虽然可以通过减少proposal的数量或降低输入图像的分辨率等方式达到提速,但是速度并没有质的提升。后者是指类似YOLO,SSD这样不需要region proposal,直接回归的检测算法,这类算法速度很快,但是准确率不如前者。 作者提出focal loss的出发点也是希望one-stage detector可以达到two-stage detector的准确率,同时不影响原有的速度。 二、拟解决问题 作者认为one-stage detector的准确率不如two-stage