Train accuracy decreases with train loss
问题 I wrote this very simple code model = keras.models.Sequential() model.add(layers.Dense(13000, input_dim=X_train.shape[1], activation='relu', trainable=False)) model.add(layers.Dense(1, input_dim=13000, activation='linear')) model.compile(loss="binary_crossentropy", optimizer='adam', metrics=["accuracy"]) model.fit(X_train, y_train, batch_size=X_train.shape[0], epochs=1000000, verbose=1) The data is MNIST but only for digits '0' and '1'. I have a very strange issue, where the loss is