50个最有价值的数据可视化图表
文总结了在数据分析和可视化中最有用的 50 个 Matplotlib 图表。这些图表列表允许您使用 python 的 matplotlib 和 seaborn 库选择要显示的可视化对象。 这些图表根据可视化目标的 7 个不同情景进行分组。 例如,如果要想象两个变量之间的关系,请查看“关联”部分下的图表。或者,如果您想要显示值如何随时间变化,请查看“变化”部分,依此类推。 有效图表的重要特征: 在不歪曲事实的情况下传达正确和必要的信息。 设计简单,您不必太费力就能理解它。 从审美角度支持信息而不是掩盖信息。 信息没有超负荷。 01 关联(Correlation) 关联图表用于可视化 2 个或更多变量之间的关系。也就是说, 一个变量如何相对于另一个变化。 1. 散点图(Scatter plot) 散点图是用于研究两个变量之间关系的经典的和基本的图表。如果数据中有多个组,则可能需要以不同颜色可视化每个组。您可以使用 plt.scatterplot() 方便地执行此操作。 2. 带边界的气泡图(Bubble plot with Encircling) 有时,您希望在边界内显示一组点以强调其重要性。在这个例子中,你从数据框中获取记录,并用 encircle() 来使边界显示出来。 3. 带线性回归最佳拟合线的散点图(Scatter plot with linear regression