采用主成分法实现因子分析中的参数估计
【推荐】2019 Java 开发者跳槽指南.pdf(吐血整理) >>> factpca<-function(x,score="Bartlett",rotation="varimax") { if(!is.matrix(x)){ x<-as.matrix(x) #x为原始的数据矩阵 } z<-scale(x,center=TRUE,scale=TRUE) #将原始数据矩阵标准化 p<-ncol(x) #求观测变量的个数 if(p<3){ stop("factor analysis requires at least three variables") } cr<-cor(z) #求相关系数矩阵 eig<-eigen(cr) #求矩阵的特征值与特征向量 s=sum(eig$values) tmp=0.0 flag=0 for(i in 1:length(eig$values)){ tmp=tmp+eig$values[i] flag=i if(tmp/s>=0.8) break } rowname<-paste("X",1:p,sep="") colname<-paste("Factor",1:flag,sep="") A<-matrix(0,nrow=p,ncol=flag,dimnames=list(rowname,colname)) #构造因子载荷矩阵,初始化为0 for(j