深度学习时代的图模型,清华发文综述图网络
原文地址: https://mp.weixin.qq.com/s?__biz=MzA3MzI4MjgzMw==&mid=2650754422&idx=4&sn=0dc881487f362322a875b4ce06e645f7&chksm=871a8908b06d001ef7386ccc752827c20711877a4a23d6a8318978095dd241d118257c607b22&scene=21#wechat_redirect 深度学习在多个领域中实现成功,如声学、图像和自然语言处理。但是,将深度学习应用于普遍存在的图数据仍然存在问题,这是由于图数据的独特特性。近期,该领域出现大量研究,极大地提升了图分析技术。清华大学朱文武等人综述了应用于图的不同深度学习方法。 他们将现有方法分为三个大类:半监督方法,包括 图神经网络 和图卷积网络;无监督方法,包括图自编码器;近期新的研究方法,包括图循环神经网络和图强化学习。然后按照这些方法的发展史对它们进行系统概述。该研究还分析了这些方法的区别,以及如何合成不同的架构。最后,该研究简单列举了这些方法的应用范围,并讨论了潜在方向。 引言 近十年,深度学习成为人工智能和机器学习这顶皇冠上的明珠,在声学、图像和自然语言处理领域展示了顶尖的性能。深度学习提取数据底层复杂模式的表达能力广受认可。但是,现实世界中普遍存在的图却是个难点