题目链接:点击打开链接
function idx = findClosestCentroids(X, centroids) %FINDCLOSESTCENTROIDS computes the centroid memberships for every example % idx = FINDCLOSESTCENTROIDS (X, centroids) returns the closest centroids % in idx for a dataset X where each row is a single example. idx = m x 1 % vector of centroid assignments (i.e. each entry in range [1..K]) % % Set K K = size(centroids, 1); % You need to return the following variables correctly. idx = zeros(size(X,1), 1); % ====================== YOUR CODE HERE ====================== % Instructions: Go over every example, find its closest centroid, and store % the index inside idx at the appropriate location. % Concretely, idx(i) should contain the index of the centroid % closest to example i. Hence, it should be a value in the % range 1..K % % Note: You can use a for-loop over the examples to compute this. % m = size(X,1); dis = zeros(m,K); %(m,k)位置表示第m个样本和第K个聚类中心的距离的平方 for i=1:m for j=1:K dis(i,j) = X(i,:)*X(i,:)' + centroids(j,:)*centroids(j,:)' - ... X(i,:)*centroids(j,:)'*2; end end [~, idx] = min(dis,[],2); %寻找每一行中最小的元素索引 % ============================================================= end
function centroids = computeCentroids(X, idx, K) %COMPUTECENTROIDS returns the new centroids by computing the means of the %data points assigned to each centroid. % centroids = COMPUTECENTROIDS(X, idx, K) returns the new centroids by % computing the means of the data points assigned to each centroid. It is % given a dataset X where each row is a single data point, a vector % idx of centroid assignments (i.e. each entry in range [1..K]) for each % example, and K, the number of centroids. You should return a matrix % centroids, where each row of centroids is the mean of the data points % assigned to it. % % Useful variables [m n] = size(X); % You need to return the following variables correctly. centroids = zeros(K, n); % ====================== YOUR CODE HERE ====================== % Instructions: Go over every centroid and compute mean of all points that % belong to it. Concretely, the row vector centroids(i, :) % should contain the mean of the data points assigned to % centroid i. % % Note: You can use a for-loop over the centroids to compute this. % for i=1:K index = find(idx == i); centroids(i,:) = mean(X(index,:)); end % ============================================================= end
剩下的基本不怎么变啦~
Code(kMeansInitCentroids.m):
function centroids = kMeansInitCentroids(X, K) %KMEANSINITCENTROIDS This function initializes K centroids that are to be %used in K-Means on the dataset X % centroids = KMEANSINITCENTROIDS(X, K) returns K initial centroids to be % used with the K-Means on the dataset X % % You should return this values correctly centroids = zeros(K, size(X, 2)); % ====================== YOUR CODE HERE ====================== % Instructions: You should set centroids to randomly chosen examples from % the dataset X % % Randomly reorder the indices of examples randidx = randperm(size(X, 1)); % Take the first K examples as centroids centroids = X(randidx(1:K), :); % ============================================================= end
另外最后还给了个例子,是关于图像颜色压缩的,也是用的K-means算法,并不是很难,自己看看了解一下就好~