pandas multiindex dataframe, ND interpolation for missing values
问题 Is it possible in pandas to interpolate for missing values in multiindex dataframe. This example below does not work as expected: arr1=np.array(np.arange(1.,10.,1.)) arr2=np.array(np.arange(2.,20.,2.)) df1=pd.DataFrame(zip(arr1,arr2,arr1+arr2,arr1*arr2),columns=['x','y','xplusy','xtimesy']) df1.set_index(['x','y'],inplace=True) df2=df1.reindex(index=zip(*df1.index.levels)+[(2,2),(3,2),(5,5)]) df2.sortlevel([0,1],inplace=True) df2.interpolate(method='linear',inplace=True) displays not what I