ids

Crossfilter and DC.js: reduce to unique number

匿名 (未验证) 提交于 2019-12-03 01:06:02
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: In the example below, I am trying to sum by unique occurence of Respond_Id . eg. in this case, it should be in total 3 , "Respond_Id" being 258,261 and 345 . This is my data: {"Respond_Id":258,"Gender":"Female","Age":"18-21","Answer":424}, {"Respond_Id":258,"Gender":"Female","Age":"18-21","Answer":428}, {"Respond_Id":261,"Gender":"Male","Age":"22-26", "Answer":427}, {"Respond_Id":261,"Gender":"Male","Age":"22-26", "Answer":432}, {"Respond_Id":345,"Gender":"Female","Age":"27-30","Answer":424}, {"Respond_Id":345,"Gender":"Female","Age":"27-30"

Android: why should IDs of views should be positive numbers?

匿名 (未验证) 提交于 2019-12-03 01:05:01
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 由 翻译 强力驱动 问题: In View.java, setId - "Sets the identifier for this view. The identifier does not have to be unique in this view's hierarchy. The identifier should be a positive number." & findViewById - "Look for a child view with the given id. If this view has the given id, Why I could not use a negative number as the id of the view? I commented out the public final View findViewById ( int id ) { // The original android check at here // if (id < 0) { // is commented out to test if system could run when Ids are negative numbers if ( id == NO_ID )

get tweets with specific status ids using tweepy

匿名 (未验证) 提交于 2019-12-03 01:00:01
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 由 翻译 强力驱动 问题: I have a list of the specific status ids of tweets that I need to obtain. The tweepy documentation provides the following: I can't work out how to use this or find any examples. Is this even the right thing? My list of ids is 2240 items long and looks something like this: response_ids = [ 717289507981107201 , 717289501337509888 , ..., 716684885411237888 ] These ids were obtained from the 'in_response_to_status_id' field of tweets that I already have (I want to match the tweets I have to the tweets that they were written in response

Assign dynamic ids to hidden fields when iterating over a collection

匿名 (未验证) 提交于 2019-12-03 00:59:01
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: Is there a way to assign dynamic ids to h:inputHidden components? EDIT1 I am trying to assign the ids inside a ui:repeat tag when iterating over a collection of elements. 回答1: It is not possible to set the ID based on the iteration value of an <ui:repeat> . But you don't need it anyway. They will by default already get dynamic and unique IDs based on the iteration index. E.g. <h:form id="form"> <ui:repeat value="#{bean.list}" var="item"> <h:inputHidden id="hidden" value="#{item.value}" /> </ui:repeat> </h:form> will generate this HTML during

Mixing apples and oranges :3 odoo8

匿名 (未验证) 提交于 2019-12-03 00:44:02
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: I'm trying to send notification to employees, i created a computed many2many field to get the partners id and pass them to partner_ids field of the mail.wizard.invite model. here is my inherited class: from openerp import models, fields, api class CustMailInvite(models.Model): _inherit = 'mail.wizard.invite' employee_ids=fields.Many2many('hr.employee','employees') @api.one @api.depends('employee_ids.user_id.partner_id') def compute_partner_ids(self): for a in self.employee_ids: if a.user_id: if a.user_id.partner_id: self.partner_ids += a

构建企业级IDS(一)前言

匿名 (未验证) 提交于 2019-12-03 00:43:02
这几年已经做了一些企业级IDS相关的工作,准备把我在这个方向上的工作总结一下,也给希望从事这方面工作的朋友们带来一些帮助吧,但是毕竟从事这方面工作的时间也不算太长,如果有什么纰漏或者不对的地方还请各位老师和大神指出。 同时推荐一本书吧: 《互联网企业安全高级指南》 。我也是再看了这本书之后,收到了一起启发,直到了如何构建企业级的IDS。企业的日志那么多,如何才能有效的利用起来,发现其中的风险和威胁。 首先,如果一个企业需要构建自己的IDS,必然是发展中遇到了相关的安全问题,就跟上面提到的书中写的那样,也按照创业公司,大中型公司,平台级公司和生态级公司给各种公司分个级别。 其次,来说说各种类型公司在构建自己IDS遇到的一些问题。 1. 创业公司人力和财力都需要完全用来保障业务,而不是保障安全(除非是安全相关的创业公司),所以如何在人力和财力有限的情况下构建自己的 IDS ,我系列的文章应该可以帮助到这部分公司。 3. 平台级公司,他们往往是已经比较稳定的互联网公司,同时业务也已经稳定,可以腾出手来保障自己的企业的安全了。这些公司往往技术研发人员足够,但是安全相关的从业人员较少,而且内部的安全部门可能还没有或者初创。并不能提供有效的安全保障。传统的安全铲平又无法满足这种公司的需求,所以只能招聘或者依赖于自己的技术人员构建自己 IDS ,那么本系列文章相信应该是最适合你们的。 4.

ELMo代码详解(一):数据准备

匿名 (未验证) 提交于 2019-12-03 00:37:01
词汇表文件 ,生成word和索引的相互对应关系,即_id_to_word和_word_to_id,前者是一个数组,后者是一个字典。当然,我们也需要加上一个特殊的词,比如 <S> , </S> , <UNK> (分别表示句首,句尾和不知词)。主要的代码如下: def __init__(self, filename, validate_file=False): ''' filename = the vocabulary file. It is a flat text file with one (normalized) token per line. In addition, the file should also contain the special tokens <S>, </S>, <UNK> (case sensitive). vocab文件,是一个纯文本,每一行只有一个词。另外,这个文件应该包含特殊词, 比如<S>, </S>, <UNK>等 ''' self._id_to_word = [] self._word_to_id = {} self._unk = -1 self._bos = -1 self._eos = -1 with open(filename) as f: idx = 0 for line in f: #词汇表中一行就是一个单词 word_name =

Open Source IDS: Snort or Suricata?

匿名 (未验证) 提交于 2019-12-03 00:22:01
COPY From: POSTED IN NETWORK SECURITY ON JANUARY 18, 2018 SNORT Suricata . What are the main differences and what can we expect in the future from SNORT? Rules Talos’ SO / VRT rules CrowdStrikes Threat Intelligence Services . Emerging Threats additional features file extraction . Application Detection Since the early days of Snorts existence, it has been called out that Snort is not “application aware.” It simply looks at traffic matching its rules and takes an action (alert, drop, etc) when there is a match. Pre-processors assist by shaping the traffic into a usable format for the rules to

tf.nn.embedding_lookup

匿名 (未验证) 提交于 2019-12-03 00:19:01
tf.nn.embedding_lookup( params, ids, partition_strategy=’mod’, name=None, validate_indices=True, max_norm=None ) 这个函数的意思就是按照ids查找params里面的vector然后输出。 比如: import numpy as np import tensorflow as tf params = np.identity( 5 ) print(params) params是一个5x5的矩阵。 [[ 1. 0. 0. 0. 0. ] [ 0. 1. 0. 0. 0. ] [ 0. 0. 1. 0. 0. ] [ 0. 0. 0. 1. 0. ] [ 0. 0. 0. 0. 1. ]] ids是3,2,1。 ids = [ 3 , 2 , 1 ] out = tf .nn .embedding _lookup(params,ids) sess = tf .InteractiveSession () print(sess .run ( out )) 那就会返回params的第三个,第二个,第一个vector组成matrix。 [[0. 0. 0. 1. 0.] [0. 0. 1. 0. 0.] [0. 1. 0. 0. 0.]] 如果ids2 = [[0,2],[3,1],[4

关于Tfrecord

匿名 (未验证) 提交于 2019-12-02 23:59:01
写入Tfrecord print("convert data into tfrecord:train\n") out_file_train = "/home/huadong.wang/bo.yan/fudan_mtl/data/ace2005/bn_nw.train.tfrecord" writer = tf.python_io.TFRecordWriter(out_file_train) for i in tqdm(range(len(data_train))): record = tf.train.Example(features=tf.train.Features(feature={ 'word_ids': tf.train.Feature(bytes_list=tf.train.BytesList(value=[train_x[i].tostring()])), 'et_ids1': tf.train.Feature(bytes_list=tf.train.BytesList(value=[train_et1[i].tostring()])), 'et_ids2': tf.train.Feature(bytes_list=tf.train.BytesList(value=[train_et2[i].tostring()])), 'position_ids1': tf