支持向量机数学推导
引言 SVM的数学推导真的是我一生的痛,看看觉得很懂,但是过了3秒,就在纠结,为什么可以这样换算?今天早上在看集成学习的时候,讲课的老师一直说SVM、SVM、SVM。。。嗯,没错,我又开始回想SVM的数学推导过程,然后,我的一个早上就这样没了。 这次趁着刚看完印象深刻,我想将刚厘清的思路写下来。仅包括如何推出最优化问题,后面的推导我打算等看完凸优化课程再记录,推导过程参考林轩田老师教授的《机器学习技法》内容。 回顾线性分类 线性分类的分类器表达式为 \[ \begin{equation} h(x) = sgn(w^Tx + b) \end{equation} \] 林老师之前讲线性分类时用的是PLA算法,即根据当前分类器是否将所有的点分类正确 \((h(x)==y)\) 。如果有一个点分类错误,那么朝着这个点或偏离这个点更新。算法一直迭代直到所有的点正确分类为止。PLA算法得到的分类器不唯一,仅凭线的初始位置这一个因素便能影响最终的分类器。 但是我们知道最想要的分类器长什么样子。我们希望这个分类器足够"胖",也就是说,这根线变胖的时候,边上的点越迟碰到它越好。 显然,看了上面的表述,我们应该知道决定这个超平面长什么样子的数据点只有那么几个,就是那些离超平面更近的点。下面开始将这个问题表述为一个最优化问题。 最优化问题的推导 我们想要寻找的超平面是 \[ \begin