python自己实现朴素贝叶斯分类模型
import numpy as np x = [['happy','new','year','every','day','sunny',], ['sunny','happy','slow','great','cool'], ['sad','bad','no'], ['sad','hard','worry'], ['happy','love','warm','dream','sweat'], ['hard','cold','slow']] y = [0,0,1,1,0,1] def vocabVec(x,y): vocabSet = set() for i in x: vocabSet = vocabSet|set(i) vocabList = list(vocabSet) a = np.zeros((len(x),len(vocabList))) for index,i in enumerate(x): for j in i: a[index][vocabList.index(j)]+=1 X = np.array(x) Y = np.array(y) P0 = a[Y == 0] p0Sum = np.sum(P0,axis=0)/np.sum(P0) p0class = len(Y[Y == 0])/float(len(Y)) P1 = a[Y == 1] p1Sum = np