import numpy as np
x = [['happy','new','year','every','day','sunny',],
['sunny','happy','slow','great','cool'],
['sad','bad','no'],
['sad','hard','worry'],
['happy','love','warm','dream','sweat'],
['hard','cold','slow']]
y = [0,0,1,1,0,1]
def vocabVec(x,y):
vocabSet = set()
for i in x:
vocabSet = vocabSet|set(i)
vocabList = list(vocabSet)
a = np.zeros((len(x),len(vocabList)))
for index,i in enumerate(x):
for j in i:
a[index][vocabList.index(j)]+=1
X = np.array(x)
Y = np.array(y)
P0 = a[Y == 0]
p0Sum = np.sum(P0,axis=0)/np.sum(P0)
p0class = len(Y[Y == 0])/float(len(Y))
P1 = a[Y == 1]
p1Sum = np.sum(P1,axis=0)/np.sum(P0)
p1class = len(Y[Y == 1])/float(len(Y))
return vocabList,p0class,p1class,p0Sum,p1Sum
def predict(wordList,vocabList,p0class,p1class,p0Sum,p1Sum):
vocabVec = np.zeros(len(vocabList))
for i in wordList:
if i in vocabList:
vocabVec[vocabList.index(i)] = 1
wordListp0Sum = np.log(p0class)
wordListp1Sum = np.log(p1class)
for index,i in enumerate(vocabVec):
if i !=0 :
if p0Sum[index] != 0:
wordListp0Sum += np.log(p0Sum[index])
if p1Sum[index] != 0:
wordListp1Sum += np.log(p1Sum[index])
print(wordListp0Sum)
print(wordListp1Sum)
if wordListp0Sum <= wordListp1Sum:
return 0
else:
return 1
if __name__ == '__main__':
print('')
vocabList, p0class, p1class, p0Sum, p1Sum = vocabVec(x,y)
print('vocabList:',vocabList)
print('p0class:',p0class)
print('p1class:',p1class)
print('p0Sum:',p0Sum)
print('p1Sum:',p1Sum)
print(predict(['dream','hard','sad'],vocabList, p0class, p1class, p0Sum, p1Sum))
print(predict(['good','great','happy'],vocabList, p0class, p1class, p0Sum, p1Sum))
来源:https://blog.csdn.net/weixin_41044499/article/details/98779358