贝叶斯

12中主要的Dropout方法:如何应用于DNNs,CNNs,RNNs中的数学和可视化解释

风流意气都作罢 提交于 2020-08-14 20:18:21
作者:Axel Thevenot 编译:ronghuaiyang 原文链接: 12中主要的Dropout方法:如何应用于DNNs,CNNs,RNNs中的数学和可视化解释 ​ mp.weixin.qq.com 深入了解DNNs,CNNs以及RNNs中的Dropout来进行正则化,蒙特卡洛不确定性和模型压缩的方法。 动机 在深度机器学习中训练一个模型的主要挑战之一是协同适应。这意味着神经元是相互依赖的。他们对彼此的影响相当大,相对于他们的输入还不够独立。我们也经常发现一些神经元具有比其他神经元更重要的预测能力的情况。换句话说,我们会过度依赖于个别的神经元的输出。 这些影响必须避免,权重必须具有一定的分布,以防止过拟合。某些神经元的协同适应和高预测能力可以通过不同的正则化方法进行调节。其中最常用的是 Dropout 。然而,dropout方法的全部功能很少被使用。 取决于它是 DNN ,一个 CNN 或一个 RNN ,不同的 dropout方法 可以被应用。在实践中,我们只(或几乎)使用一个。我认为这是一个可怕的陷阱。所以在本文中,我们将从数学和可视化上深入到dropouts的世界中去理解: 标准的Dropout方法 标准Dropout的变体 用在CNNs上的dropout方法 用在RNNs上的dropout方法 其他的dropout应用(蒙特卡洛和压缩) 符号 标准的Dropout

入门python有什么好的书籍推荐?python教程 python爬虫

£可爱£侵袭症+ 提交于 2020-08-14 09:37:28
Python非常灵活,让实验变得容易。解决简单问题的方法简单而优雅。Python为新手程序员提供了一个很好的实验室。 PS; 如有需要python学习资料的小伙伴可以点击下方链接自行获取 python免费学习资料 Python具有一些特征,使其成为第一种编程语言的接近完美的选择。Python基本结构简单、干净、设计精良,使学生能够专注于算法思维和程序设计的主要技能,而不会陷入晦涩难解的语言细节。在Python中学习的概念可以直接传递给后续学习的系统语言(如C ++和Java)。但Python不是一种“玩具语言”,它是一种现实世界的生产语言,可以在几乎每个编程平台上免费提供,并且具有自己易于使用的集成编程环境。最好的是,Python让学习编程又变得有趣了。 这17本Python书单让你快速掌握Python编程。 《Python神经网络编程》 [英] 塔里克·拉希德(Tariq Rashid)著本书用轻松的笔触,一步一步揭示了神经网络的数学思想,并介绍如何使用Python编程语言开发神经网络。本书将带领您进行一场妙趣横生却又有条不紊的旅行——从一个非常简单的想法开始,逐步理解神经网络的工作机制。您无需任何超出中学范围的数学知识,并且本书还给出易于理解的微积分简介。本书为美亚五星畅销书,备受关注。基于Python3.5,全彩印刷,如果只选一本神经网络图书,他是首选。

因果AI诊断模型登上nature:模拟专业医师思维,诊断罕见疾病,超越SOTA算法

霸气de小男生 提交于 2020-08-14 09:03:31
     作者 | 蒋宝尚   编辑 | 陈彩娴   如何才能提高人工智能医疗诊断的准确率?有一个答案是: 试着让人工智能像专业医师那样思考。      论文下载地址:https://www.nature.com/articles/s41467-020-17419-7#ref-CR52   8月11日,来自伦敦大学学院和英国数字医疗公司Babylon Health的研究员合作开发了依靠因果关系诊断疾病的AI系统,并在《自然通讯》期刊上发表了相关论文。   在论文中,作者提到, 因果AI系统打破了传统的根据症状诊断疾病的诊断方式,通过使用“反事实问题”缩小患者可能出现状况的范围。 显然,因果AI系统更加接近专业医师的诊断思维。   具体而言,传统的AI系统诊断方法,包括基于贝叶斯模型和深度学习的方法,都依赖于关联推理(associative inference)。例如,如果病人因为呼吸急促而住院,基于关联推理的AI系统可能将呼吸急促和超重(being overweight)联系起来,然后再将超重和2型糖尿病联系起来,从而诊断出应使用胰岛素的治疗方式。   如果专业医师(因果推断)进行对“呼吸急促”进行诊断,那么,医生可能会专注于呼吸急促和哮喘之间的联系。   关于诊断的准确率,作者在论文中介绍到:“ 我们使用了1671个临床案例作为测试集,然后将反事实算法

机器学习10种经典算法的Python实现

一个人想着一个人 提交于 2020-08-14 03:07:09
广义来说,有三种机器学习算法 1、 监督式学习 工作机制:这个算法由一个目标变量或结果变量(或因变量)组成。这些变量由已知的一系列预示变量(自变量)预测而来。利用这一系列变量,我们生成一个将输入值映射到期望输出值的函数。这个训练过程会一直持续,直到模型在训练数据上获得期望的精确度。监督式学习的例子有:回归、决策树、随机森林、K – 近邻算法、逻辑回归等。 2、非监督式学习 工作机制:在这个算法中,没有任何目标变量或结果变量要预测或估计。这个算法用在不同的组内聚类分析。这种分析方式被广泛地用来细分客户,根据干预的方式分为不同的用户组。非监督式学习的例子有:关联算法和 K – 均值算法。 3、强化学习 工作机制:这个算法训练机器进行决策。它是这样工作的:机器被放在一个能让它通过反复试错来训练自己的环境中。机器从过去的经验中进行学习,并且尝试利用了解最透彻的知识作出精确的商业判断。 强化学习的例子有马尔可夫决策过程。 常见机器学习算法名单 这里是一个常用的机器学习算法名单。这些算法几乎可以用在所有的数据问题上: 线性回归 逻辑回归 决策树 SVM 朴素贝叶斯 K最近邻算法 K均值算法 随机森林算法 降维算法 Gradient Boost 和 Adaboost 算法 1、线性回归 线性回归通常用于根据连续变量估计实际数值(房价、呼叫次数、总销售额等)

【2万字干货】利用深度学习最新前沿预测股价走势

∥☆過路亽.° 提交于 2020-08-13 06:45:07
https://zhuanlan.zhihu.com/p/56509499 正文 在本篇文章中,我们将创建一个完整的程序来预测股票价格的变动。为此,我们将使用生成对抗性网络(GAN),其中LSTM是一种递归神经网络,它是生成器,而卷积神经网络CNN是鉴别器。我们使用LSTM的原因很明显,我们试图预测时间序列数据。为什么我们使用GAN,特别是CNN作为鉴别器?这是一个好问题,后面会有专门的部分介绍。 当然,我们将对每个步骤会进行详细的介绍,但最难的部分是GAN:成功训练GAN非常棘手的部分是获得正确的超参数集。因此,我们将使用贝叶斯优化(以及高斯过程)和深度强化学习(DRL)来决定何时以及如何改变GAN的超参数(探索与开发的两难境地)。在创建强化学习时,我们将使用该领域的最新进展,如Rainbow和PPO。 我们将使用许多不同类型的输入数据。随着股票的历史交易数据和技术指标,我们将使用NLP最新的进展(使用Bidirectional Embedding Representations from Transformers,BERT,一种传输学习NLP)创建情绪分析(作为基本分析的来源),傅里叶变换提取总体趋势方向,stacked autoencoders识别其他高级特征,寻找相关资产的特征组合,ARIMA用于股票函数的近似度等等,以便尽可能多地获取关于股票的信息、模式、相关性等

北理工研二一作获杰出论文,大陆论文量前三,ICML 2020各奖项出炉

帅比萌擦擦* 提交于 2020-08-13 03:16:18
   刚刚,ICML 2020 公布了本届杰出论文奖和杰出论文荣誉提名奖(各两篇),其中北理工研二学生魏恺轩为一作的论文获得了杰出论文奖,主题为开发用于自动搜索参数的策略网络。另外,来自英伟达、斯坦福等机构的研究者也摘得杰出论文奖。      机器学习顶级会议 ICML 2020 于本月 13 日至 18 日以线上形式举行。此次会议共收到 4990 篇论文,接收论文 1088 篇,接收率达 21.8%。与往年相比,接收率逐年走低。   刚刚,ICML 2020 大会放出了杰出论文奖和杰出论文荣誉提名奖,一篇发表于 2009 年的论文获得此次大会的时间检验奖。   其中,北京理工大学和剑桥大学合作的论文《Tuning-free Plug-and-Play Proximal Algorithm for Inverse Imaging Problems》获得了此次会议的杰出论文奖。我们之前报道过的 OpenAI 新研究《Generative Pretraining From Pixels》获得了杰出论文荣誉提名奖。    杰出论文奖    论文1:On Learning Sets of Symmetric Elements      论文地址:https://arxiv.org/pdf/2002.08599.pdf   论文作者:Haggai Maron(英伟达研究院)、Or

ICRA 2020最佳论文授予加州理工、清华大学:首个自适应外骨骼步态AI算法

余生长醉 提交于 2020-08-13 00:55:53
上周末,机器人领域顶级会议 ICRA 2020 放出了所有奖项的结果,来自加州理工和清华大学的 Maegan Tucker 等人的工作获得了本届大会最佳论文奖。本论文还同时获得最佳人机交互论文奖(Best Paper Award on Human-Robot Interaction)。 选自arXiv,作者:Maegan Tucker 等人,机器之心编译,机器之心编辑部。 论文链接: https:// arxiv.org/abs/1909.1231 6 这项研究展示了如何利用「个人偏好」,来定制化提升人类使用下肢外骨骼的舒适感。以往,机械外骨骼一直被美国军队视为提升士兵作战能力的工具,但 加州理工和清华大学的这项研究在未来或许可为数千万残障人士带来帮助 。 该研究提出了一种叫做 COSPAR 的算法,它可以将合作学习应用于下肢外骨骼操作时对人类偏好的适应,并在模拟和真人实验中进行了测试。 论文参与方有Caltech的Aaron Ames组、Joel Burdick组和Yisong Yue组,以及清华大学的Yanan Sui组。 研究者表示,未来计划将 COSPAR 用于优化规模更大的步态参数,但可能需要集成该算法与更多可用于高维特征空间学习的技术。这一方法还可以扩展到预计算步态库以外的数据,进而生成全新的步态或者控制器设计。 从辅助移动到自动驾驶,从教育到对话系统

零起点PYTHON机器学习快速入门 PDF |网盘链接下载|

这一生的挚爱 提交于 2020-08-12 15:48:31
点击此处进入下载地址 提取码:2wg3 资料简介: 本书采用独创的黑箱模式,MBA案例教学机制,结合一线实战案例,介绍Sklearn人工智能模块库和常用的机器学习算法。书中配备大量图表说明,没有枯燥的数学公式,普通读者,只要懂Word、Excel,就能够轻松阅读全书,并学习使用书中的知识,分析大数据。本书具有以下特色:独创的黑箱教学模式,全书无任何抽象理论和深奥的数学公式。首次系统化融合Sklearn人工智能软件和Pandas数据分析软件,不用再直接使用复杂的Numpy数学矩阵模块。系统化的Sklearn函数和API中文文档,可作为案头工具书随时查阅。基于Sklearn Pandas模式,无须任何理论基础,全程采用MBA案例模式,懂Excel就可看懂。 资料目录: 第 1 章 从阿尔法狗开始说起1 1.1 阿尔法狗的前世今生.......1 1.2 机器学习是什么.....2 1.3 机器学习大史记.....3 1.4 机器学习经典案例......... 11 第 2 章 开发环境......13 2.1 数据分析首选 Python.....13 2.2 用户运行平台.......18 2.3 程序目录结构.......19 2.4 Spyder 编辑器界面设置.20 2.5 Python 命令行模式.........26 2.6 Notebook 模式......27 2.7

聊聊线程的并发工具类

荒凉一梦 提交于 2020-08-12 11:05:59
聊聊线程的并发工具类 我接触编程的时间很短,但确实对我改变很大,希望能在这条路一直走下去。这是我人生中第一次写博客,下半年的第一天希望能是一个好的开始! Fork-Join java下多线程的开发可以我们自己启用多线程,线程池,还可以使用forkjoin, forkjoin 可以让我们不去了解诸如 Thread,Runnable 等相关的知识,只要遵循 forkjoin 的开发模式,就可以写出很好的多线程并发程序,在JDK1.7版本中提供了Fork-Join并行执行任务框架,它的主要作用是把大任务分割成若干个小任务,再对每个小任务得到的结果进行汇总,此种开发方法也叫分治编程,分治编程可以极大地利用CPU资源,提高任务执行的效率,也是目前与多线程有关的前沿技术。 分而治之 forkjoin在处理某一类问题时非常的有用,哪一类问题?分而治之的问题。十大计算机经典算法:快速排序、堆排序、归并排序、二分查找、线性查找、 深度优先、广度优先、Dijkstra、动态规划、朴素贝叶斯分类,有几个属于分 而治之?3 个,快速排序、归并排序、二分查找,还有大数据中M/R 都是。 分治法的设计思想是:将一个难以直接解决的大问题,分割成一些规模较小 的相同问题,以便各个击破,分而治之。 分治策略是:对于一个规模为 n 的问题,若该问题可以容易地解决(比如说 规模 n 较小)则直接解决,否则将其分解为

构建简历解析工具

不打扰是莪最后的温柔 提交于 2020-08-12 07:42:10
作者|Low Wei Hong 编译|VK 来源|Medium 当我还是一名大学生的时候,我很好奇自动提取简历信息是如何工作的。我将准备各种格式的简历,并上传到招聘网站,以测试背后的算法是如何工作的。我想自己尝试建一个。因此,在最近几周的空闲时间里,我决定构建一个简历解析器。 一开始,我觉得很简单。只是用一些模式来挖掘信息,结果发现我错了!构建简历解析器很困难,简历的布局有很多种,你可以想象。 例如,有些人会把日期放在简历的标题前面,有些人不把工作经历的期限写在简历上,有些人不会在简历上列出公司。这使得简历解析器更难构建,因为没有要捕获的固定模式。 经过一个月的工作,根据我的经验,我想和大家分享哪些方法工作得很好,在开始构建自己的简历分析器之前,你应该注意哪些事情。 在详细介绍之前,这里有一段视频短片,它显示了我的简历分析器的最终结果( https://youtu.be/E-yMeqjXzEA ) 数据收集 我在多个网站上搜了800份简历。简历可以是PDF格式,也可以是doc格式。 我使用的工具是Google的Puppeter(Javascript)从几个网站收集简历。 数据收集的一个问题是寻找一个好的来源来获取简历。在你能够发现它之后,只要你不频繁地访问服务器,抓取一部分就可以了。 之后,我选择了一些简历,并手动将数据标记到每个字段。标记工作的完成是为了比较不同解析方法的性能。