How to apply LSTM-autoencoder to variant-length time-series data?
问题 I read LSTM-autoencoder in this tutorial: https://blog.keras.io/building-autoencoders-in-keras.html, and paste the corresponding keras implementation below: from keras.layers import Input, LSTM, RepeatVector from keras.models import Model inputs = Input(shape=(timesteps, input_dim)) encoded = LSTM(latent_dim)(inputs) decoded = RepeatVector(timesteps)(encoded) decoded = LSTM(input_dim, return_sequences=True)(decoded) sequence_autoencoder = Model(inputs, decoded) encoder = Model(inputs, encoded