Is there a way to randomly shuffle what keys correspond to what values? I have found random.sample but I was wondering if there was a more pythonic/faster way of doing this.
Example: a = {"one":1,"two":2,"three":3}
Shuffled: a_shuffled = {"one":2,"two":3,"three":1}
sorry the only way to make it faster is by using numpy :/. No matter what you do it has to somehow scramble all the indices which takes time - so doing it in C will help slightly. Also the difference between sheer random and this random is that you can't have repeated indices.
sorry it's sort of long now - so you'll have to do some scrolling
E.g. # made for python 2.7 but should be able to work in python 3 import random import numpy as np from time import time def given_seq(): #general example start = time() a = {"one":1,"two":2,"three":3} keys = a.keys() random.shuffle(keys) a = dict(zip(keys, a.values())) #Large example a = dict(zip(range(0,100000), range(1,100001))) def random_shuffle(): keys = a.keys() random.shuffle(keys) b = dict(zip(keys, a.values())) def np_random_shuffle(): keys = a.keys() np.random.shuffle(keys) b = dict(zip(keys, a.values())) def np_random_permutation(): #more concise and using numpy's permutation option b = dict(zip(np.random.permutation(a.keys()), a.values())) #if you precompute the array key as a numpy array def np_random_keys_choice(): akeys = np.array(a.keys()) return dict(zip(akeys[np.random.permutation(len(akeys))],a.values())) def np_random_keys_shuffle(): key_indexes = np.arange(len(a.keys())) np.random.shuffle(key_indexes) return dict(zip(np.array(a.keys())[key_indexes],a.values())) #fixed dictionary size key_indexes = np.arange(len(a.keys())) def np_random_fixed_keys_shuffle(): np.random.shuffle(key_indexes) return dict(zip(np.array(a.keys())[key_indexes],a.values())) #so dstack actually slows things down def np_random_shuffle_dstack(): keys = a.keys() np.random.shuffle(keys) return dict(np.dstack((keys, a.values()))[0]) if __name__=='__main__': import timeit # i can use global namespace level introspection to automate the below line but it's not needed yet for func in ['given_seq', 'random_shuffle', 'np_random_shuffle', 'np_random_permutation', 'np_random_keys_choice', 'np_random_keys_shuffle', 'np_random_fixed_keys_shuffle']: print func, timeit.timeit("{}()".format(func), setup = "from __main__ import {}".format(''.join(func)), number = 200)
given_seq 0.00103783607483 random_shuffle 23.869166851 np_random_shuffle 16.3060112 np_random_permutation 21.9921720028 np_random_keys_choice 21.8105020523 np_random_keys_shuffle 22.4905178547 np_random_fixed_keys_shuffle 21.8256559372
Using Choice/Permutation may look nicer - but it's not faster by any means. Unfortunately copying is usually slow unless it's a small size - and there's no way to pass pointers/references without it having to take up an extra line - though I debate if this makes it 'non-pythonic'
namely if you look at the Zen of Python or just do import this
in a python session one of the lines is:
Although practicality beats purity.
so it's open to interpretation of course :)
In [47]: import random In [48]: keys = a.keys() In [49]: values = a.values() In [50]: random.shuffle(values) In [51]: a_shuffled = dict(zip(keys, values)) In [52]: a_shuffled Out[52]: {'one': 2, 'three': 1, 'two': 3}
Or, more pithy would be:
In [56]: dict(zip(a.keys(), random.sample(a.values(), len(a)))) Out[56]: {'one': 3, 'three': 2, 'two': 1}
(but I suppose that is the solution you already came up with.)
Note that although using random.sample
is pithier, using random.shuffle
is a bit faster:
import random import string def using_shuffle(a): keys = a.keys() values = a.values() random.shuffle(values) return dict(zip(keys, values)) def using_sample(a): return dict(zip(a.keys(), random.sample(a.values(), len(a)))) N = 10000 keys = [''.join(random.choice(string.letters) for j in range(4)) for i in xrange(N)] a = dict(zip(keys, range(N))) In [71]: %timeit using_shuffle(a) 100 loops, best of 3: 5.14 ms per loop In [72]: %timeit using_sample(a) 100 loops, best of 3: 5.78 ms per loop