I am trying to implement a simple feed forward network. However, I can't figure out how to feed a Placeholder
. This example:
import tensorflow as tf num_input = 2 num_hidden = 3 num_output = 2 x = tf.placeholder("float", [num_input, 1]) W_hidden = tf.Variable(tf.zeros([num_hidden, num_input])) W_out = tf.Variable(tf.zeros([num_output, num_hidden])) b_hidden = tf.Variable(tf.zeros([num_hidden])) b_out = tf.Variable(tf.zeros([num_output])) h = tf.nn.softmax(tf.matmul(W_hidden,x) + b_hidden) sess = tf.Session() with sess.as_default(): print h.eval()
Gives me the following error:
... results = self._do_run(target_list, unique_fetch_targets, feed_dict_string) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 419, in _do_run e.code) tensorflow.python.framework.errors.InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder' with dtype float and shape dim { size: 2 } dim { size: 1 } [[Node: Placeholder = Placeholder[dtype=DT_FLOAT, shape=[2,1], _device="/job:localhost/replica:0/task:0/cpu:0"]()]] Caused by op u'Placeholder', defined at: File "/home/sfalk/workspace/SemEval2016/java/semeval2016-python/slot1_tf.py", line 8, in x = tf.placeholder("float", [num_input, 1]) ...
I have tried
tf.assign([tf.Variable(1.0), tf.Variable(1.0)], x) tf.assign([1.0, 1.0], x)
but that does not work apparently.