SHA1和SHA256算法C语言实现

匿名 (未验证) 提交于 2019-12-03 00:36:02

SHA家族的五个算法,分别是SHA-1、SHA-224、SHA-256、SHA-384,和SHA-512,由美国国家安全局(NSA)所设计,并由美国国家标准与技术研究院(NIST)发布,是美国的政府标准。
哈希算法使用比较广泛,具体算法原理就不再赘述,这里只是记录一下C语言的源码和使用。

以下先是SHA1的算法

/*  *  FIPS-180-1 compliant SHA-1 implementation  *  *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved  *  SPDX-License-Identifier: Apache-2.0  *  *  Licensed under the Apache License, Version 2.0 (the "License"); you may  *  not use this file except in compliance with the License.  *  Unless required by applicable law or agreed to in writing, software  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  *  See the License for the specific language governing permissions and  *  limitations under the License.  */  #include "stdafx.h"  #include "sha1.h"  #include <string.h>  #include <stdio.h>   /* Implementation that should never be optimized out by the compiler */ static void zeroize( void *v, size_t n ) {     volatile unsigned char *p = (unsigned char*)v; while( n-- ) *p++ = 0; }  /*  * 32-bit integer manipulation macros (big endian)  */ #ifndef GET_UINT32_BE #define GET_UINT32_BE(n,b,i)                            \ {                                                       \     (n) = ( (uint32_t) (b)[(i)    ] << 24 )             \         | ( (uint32_t) (b)[(i) + 1] << 16 )             \         | ( (uint32_t) (b)[(i) + 2] <<  8 )             \         | ( (uint32_t) (b)[(i) + 3]       );            \ } #endif  #ifndef PUT_UINT32_BE #define PUT_UINT32_BE(n,b,i)                            \ {                                                       \     (b)[(i)    ] = (unsigned char) ( (n) >> 24 );       \     (b)[(i) + 1] = (unsigned char) ( (n) >> 16 );       \     (b)[(i) + 2] = (unsigned char) ( (n) >>  8 );       \     (b)[(i) + 3] = (unsigned char) ( (n)       );       \ } #endif  void sha1_init( sha1_context *ctx ) {     memset( ctx, 0, sizeof( sha1_context ) ); }  void sha1_free( sha1_context *ctx ) {     if( ctx == NULL )         return;      zeroize( ctx, sizeof( sha1_context ) ); }  void sha1_clone( sha1_context *dst,                          const sha1_context *src ) {     *dst = *src; }  /*  * SHA-1 context setup  */ void sha1_starts( sha1_context *ctx ) {     ctx->total[0] = 0;     ctx->total[1] = 0;      ctx->state[0] = 0x67452301;     ctx->state[1] = 0xEFCDAB89;     ctx->state[2] = 0x98BADCFE;     ctx->state[3] = 0x10325476;     ctx->state[4] = 0xC3D2E1F0; }  #if !defined(MBEDTLS_SHA1_PROCESS_ALT) void sha1_process( sha1_context *ctx, const unsigned char data[64] ) {     uint32_t temp, W[16], A, B, C, D, E;      GET_UINT32_BE( W[ 0], data,  0 );     GET_UINT32_BE( W[ 1], data,  4 );     GET_UINT32_BE( W[ 2], data,  8 );     GET_UINT32_BE( W[ 3], data, 12 );     GET_UINT32_BE( W[ 4], data, 16 );     GET_UINT32_BE( W[ 5], data, 20 );     GET_UINT32_BE( W[ 6], data, 24 );     GET_UINT32_BE( W[ 7], data, 28 );     GET_UINT32_BE( W[ 8], data, 32 );     GET_UINT32_BE( W[ 9], data, 36 );     GET_UINT32_BE( W[10], data, 40 );     GET_UINT32_BE( W[11], data, 44 );     GET_UINT32_BE( W[12], data, 48 );     GET_UINT32_BE( W[13], data, 52 );     GET_UINT32_BE( W[14], data, 56 );     GET_UINT32_BE( W[15], data, 60 );  #define S(x,n) ((x << n) | ((x & 0xFFFFFFFF) >> (32 - n)))  #define R(t)                                            \ (                                                       \     temp = W[( t -  3 ) & 0x0F] ^ W[( t - 8 ) & 0x0F] ^ \            W[( t - 14 ) & 0x0F] ^ W[  t       & 0x0F],  \     ( W[t & 0x0F] = S(temp,1) )                         \ )  #define P(a,b,c,d,e,x)                                  \ {                                                       \     e += S(a,5) + F(b,c,d) + K + x; b = S(b,30);        \ }      A = ctx->state[0];     B = ctx->state[1];     C = ctx->state[2];     D = ctx->state[3];     E = ctx->state[4];  #define F(x,y,z) (z ^ (x & (y ^ z))) #define K 0x5A827999      P( A, B, C, D, E, W[0]  );     P( E, A, B, C, D, W[1]  );     P( D, E, A, B, C, W[2]  );     P( C, D, E, A, B, W[3]  );     P( B, C, D, E, A, W[4]  );     P( A, B, C, D, E, W[5]  );     P( E, A, B, C, D, W[6]  );     P( D, E, A, B, C, W[7]  );     P( C, D, E, A, B, W[8]  );     P( B, C, D, E, A, W[9]  );     P( A, B, C, D, E, W[10] );     P( E, A, B, C, D, W[11] );     P( D, E, A, B, C, W[12] );     P( C, D, E, A, B, W[13] );     P( B, C, D, E, A, W[14] );     P( A, B, C, D, E, W[15] );     P( E, A, B, C, D, R(16) );     P( D, E, A, B, C, R(17) );     P( C, D, E, A, B, R(18) );     P( B, C, D, E, A, R(19) );  #undef K #undef F  #define F(x,y,z) (x ^ y ^ z) #define K 0x6ED9EBA1      P( A, B, C, D, E, R(20) );     P( E, A, B, C, D, R(21) );     P( D, E, A, B, C, R(22) );     P( C, D, E, A, B, R(23) );     P( B, C, D, E, A, R(24) );     P( A, B, C, D, E, R(25) );     P( E, A, B, C, D, R(26) );     P( D, E, A, B, C, R(27) );     P( C, D, E, A, B, R(28) );     P( B, C, D, E, A, R(29) );     P( A, B, C, D, E, R(30) );     P( E, A, B, C, D, R(31) );     P( D, E, A, B, C, R(32) );     P( C, D, E, A, B, R(33) );     P( B, C, D, E, A, R(34) );     P( A, B, C, D, E, R(35) );     P( E, A, B, C, D, R(36) );     P( D, E, A, B, C, R(37) );     P( C, D, E, A, B, R(38) );     P( B, C, D, E, A, R(39) );  #undef K #undef F  #define F(x,y,z) ((x & y) | (z & (x | y))) #define K 0x8F1BBCDC      P( A, B, C, D, E, R(40) );     P( E, A, B, C, D, R(41) );     P( D, E, A, B, C, R(42) );     P( C, D, E, A, B, R(43) );     P( B, C, D, E, A, R(44) );     P( A, B, C, D, E, R(45) );     P( E, A, B, C, D, R(46) );     P( D, E, A, B, C, R(47) );     P( C, D, E, A, B, R(48) );     P( B, C, D, E, A, R(49) );     P( A, B, C, D, E, R(50) );     P( E, A, B, C, D, R(51) );     P( D, E, A, B, C, R(52) );     P( C, D, E, A, B, R(53) );     P( B, C, D, E, A, R(54) );     P( A, B, C, D, E, R(55) );     P( E, A, B, C, D, R(56) );     P( D, E, A, B, C, R(57) );     P( C, D, E, A, B, R(58) );     P( B, C, D, E, A, R(59) );  #undef K #undef F  #define F(x,y,z) (x ^ y ^ z) #define K 0xCA62C1D6      P( A, B, C, D, E, R(60) );     P( E, A, B, C, D, R(61) );     P( D, E, A, B, C, R(62) );     P( C, D, E, A, B, R(63) );     P( B, C, D, E, A, R(64) );     P( A, B, C, D, E, R(65) );     P( E, A, B, C, D, R(66) );     P( D, E, A, B, C, R(67) );     P( C, D, E, A, B, R(68) );     P( B, C, D, E, A, R(69) );     P( A, B, C, D, E, R(70) );     P( E, A, B, C, D, R(71) );     P( D, E, A, B, C, R(72) );     P( C, D, E, A, B, R(73) );     P( B, C, D, E, A, R(74) );     P( A, B, C, D, E, R(75) );     P( E, A, B, C, D, R(76) );     P( D, E, A, B, C, R(77) );     P( C, D, E, A, B, R(78) );     P( B, C, D, E, A, R(79) );  #undef K #undef F      ctx->state[0] += A;     ctx->state[1] += B;     ctx->state[2] += C;     ctx->state[3] += D;     ctx->state[4] += E; }   /*  * SHA-1 process buffer  */ void sha1_update( sha1_context *ctx, const unsigned char *input, size_t ilen ) {     size_t fill;     uint32_t left;      if( ilen == 0 )         return;      left = ctx->total[0] & 0x3F;     fill = 64 - left;      ctx->total[0] += (uint32_t) ilen;     ctx->total[0] &= 0xFFFFFFFF;      if( ctx->total[0] < (uint32_t) ilen )         ctx->total[1]++;      if( left && ilen >= fill )     {         memcpy( (void *) (ctx->buffer + left), input, fill );         sha1_process( ctx, ctx->buffer );         input += fill;         ilen  -= fill;         left = 0;     }      while( ilen >= 64 )     {         sha1_process( ctx, input );         input += 64;         ilen  -= 64;     }      if( ilen > 0 )         memcpy( (void *) (ctx->buffer + left), input, ilen ); }  static const unsigned char sha1_padding[64] = {  0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };  /*  * SHA-1 final digest  */ void sha1_finish( sha1_context *ctx, unsigned char output[20] ) {     uint32_t last, padn;     uint32_t high, low;     unsigned char msglen[8];      high = ( ctx->total[0] >> 29 )          | ( ctx->total[1] <<  3 );     low  = ( ctx->total[0] <<  3 );      PUT_UINT32_BE( high, msglen, 0 );     PUT_UINT32_BE( low,  msglen, 4 );      last = ctx->total[0] & 0x3F;     padn = ( last < 56 ) ? ( 56 - last ) : ( 120 - last );      sha1_update( ctx, sha1_padding, padn );     sha1_update( ctx, msglen, 8 );      PUT_UINT32_BE( ctx->state[0], output,  0 );     PUT_UINT32_BE( ctx->state[1], output,  4 );     PUT_UINT32_BE( ctx->state[2], output,  8 );     PUT_UINT32_BE( ctx->state[3], output, 12 );     PUT_UINT32_BE( ctx->state[4], output, 16 ); }   /*  * output = SHA-1( input buffer )  */ int sha1( const unsigned char *input, size_t ilen, unsigned char output[20] ) {     sha1_context ctx;      sha1_init( &ctx );     sha1_starts( &ctx );     sha1_update( &ctx, input, ilen );     sha1_finish( &ctx, output );     sha1_free( &ctx );     return 0; }   

数据通过SHA1计算得到20字节长度的哈希值,sha1() 封装用来一次性计算一段字符串的哈希值,如果要采用多步计算的方式,就直接使用该函数内部的这几个接口,如下的一个函数示例:

//test int sha1_test(unsigned char *hash) {  int result; int fd; unsigned char hashBuf[32]; unsigned char vDecompCache[512]={0};  sha1_context sha1ctx;  sha1_init( &sha1ctx); sha1_starts( &sha1ctx);  fd = open("/data/test.data",O_RDONLY); if(fd < 0) { perror("open error"); return -1; }  do  {     result = read(fd, vDecompCache, sizeof(vDecompCache));     sha1_update( &sha1ctx, vDecompCache, result);  }while(result > 0);     sha1_finish(&sha1ctx, hashBuf);      memcpy(hash, hashBuf, 20);     sha1_free( &sha1ctx );     DebugmyAsciiToHex("SHA1:",hashBuf,20);     return 0;  }

下边的是SHA256和SHA224的源码:

/*  *  FIPS-180-2 compliant SHA-256 implementation  *  *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved  *  SPDX-License-Identifier: GPL-2.0  *  *  This program is free software; you can redistribute it and/or modify  *  it under the terms of the GNU General Public License as published by  *  the Free Software Foundation; either version 2 of the License, or  *  (at your option) any later version.  *  *  This program is distributed in the hope that it will be useful,  *  but WITHOUT ANY WARRANTY; without even the implied warranty of  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the  *  GNU General Public License for more details.  *  */  #include <string.h> #include <stdio.h> #include <stdlib.h> #include "stdafx.h" #include "sha256.h"   /* Implementation that should never be optimized out by the compiler */ static void zeroize( void *v, size_t n ) {     volatile unsigned char *p = (unsigned char *)v; while( n-- ) *p++ = 0; }  /*  * 32-bit integer manipulation macros (big endian)  */ #ifndef GET_UINT32_BE #define GET_UINT32_BE(n,b,i)                            \ do {                                                    \     (n) = ( (uint32_t) (b)[(i)    ] << 24 )             \         | ( (uint32_t) (b)[(i) + 1] << 16 )             \         | ( (uint32_t) (b)[(i) + 2] <<  8 )             \         | ( (uint32_t) (b)[(i) + 3]       );            \ } while( 0 ) #endif  #ifndef PUT_UINT32_BE #define PUT_UINT32_BE(n,b,i)                            \ do {                                                    \     (b)[(i)    ] = (unsigned char) ( (n) >> 24 );       \     (b)[(i) + 1] = (unsigned char) ( (n) >> 16 );       \     (b)[(i) + 2] = (unsigned char) ( (n) >>  8 );       \     (b)[(i) + 3] = (unsigned char) ( (n)       );       \ } while( 0 ) #endif   void sha256_init( sha256_context *ctx ) {     memset( ctx, 0, sizeof( sha256_context ) ); }  void sha256_free( sha256_context *ctx ) {     if( ctx == NULL )         return;      zeroize( ctx, sizeof( sha256_context ) ); }  void sha256_clone( sha256_context *dst,                            const sha256_context *src ) {     *dst = *src; }  /*  * SHA-256 context setup  */ void sha256_starts( sha256_context *ctx, int is224 ) {     ctx->total[0] = 0;     ctx->total[1] = 0;      if( is224 == 0 )     {         /* SHA-256 */         ctx->state[0] = 0x6A09E667;         ctx->state[1] = 0xBB67AE85;         ctx->state[2] = 0x3C6EF372;         ctx->state[3] = 0xA54FF53A;         ctx->state[4] = 0x510E527F;         ctx->state[5] = 0x9B05688C;         ctx->state[6] = 0x1F83D9AB;         ctx->state[7] = 0x5BE0CD19;     }     else     {         /* SHA-224 */         ctx->state[0] = 0xC1059ED8;         ctx->state[1] = 0x367CD507;         ctx->state[2] = 0x3070DD17;         ctx->state[3] = 0xF70E5939;         ctx->state[4] = 0xFFC00B31;         ctx->state[5] = 0x68581511;         ctx->state[6] = 0x64F98FA7;         ctx->state[7] = 0xBEFA4FA4;     }      ctx->is224 = is224; }  #if !defined(SHA256_PROCESS_ALT) static const uint32_t K[] = {     0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,     0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,     0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,     0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,     0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,     0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,     0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,     0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,     0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,     0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,     0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,     0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,     0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,     0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,     0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,     0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2, };  #define  SHR(x,n) ((x & 0xFFFFFFFF) >> n) #define ROTR(x,n) (SHR(x,n) | (x << (32 - n)))  #define S0(x) (ROTR(x, 7) ^ ROTR(x,18) ^  SHR(x, 3)) #define S1(x) (ROTR(x,17) ^ ROTR(x,19) ^  SHR(x,10))  #define S2(x) (ROTR(x, 2) ^ ROTR(x,13) ^ ROTR(x,22)) #define S3(x) (ROTR(x, 6) ^ ROTR(x,11) ^ ROTR(x,25))  #define F0(x,y,z) ((x & y) | (z & (x | y))) #define F1(x,y,z) (z ^ (x & (y ^ z)))  #define R(t)                                    \ (                                               \     W[t] = S1(W[t -  2]) + W[t -  7] +          \            S0(W[t - 15]) + W[t - 16]            \ )  #define P(a,b,c,d,e,f,g,h,x,K)                  \ {                                               \     temp1 = h + S3(e) + F1(e,f,g) + K + x;      \     temp2 = S2(a) + F0(a,b,c);                  \     d += temp1; h = temp1 + temp2;              \ }  void sha256_process( sha256_context *ctx, const unsigned char data[64] ) {     uint32_t temp1, temp2, W[64];     uint32_t A[8];     unsigned int i;      for( i = 0; i < 8; i++ )         A[i] = ctx->state[i];  #if defined(SHA256_SMALLER)     for( i = 0; i < 64; i++ )     {         if( i < 16 )             GET_UINT32_BE( W[i], data, 4 * i );         else             R( i );          P( A[0], A[1], A[2], A[3], A[4], A[5], A[6], A[7], W[i], K[i] );          temp1 = A[7]; A[7] = A[6]; A[6] = A[5]; A[5] = A[4]; A[4] = A[3];         A[3] = A[2]; A[2] = A[1]; A[1] = A[0]; A[0] = temp1;     } #else /* SHA256_SMALLER */     for( i = 0; i < 16; i++ )         GET_UINT32_BE( W[i], data, 4 * i );      for( i = 0; i < 16; i += 8 )     {         P( A[0], A[1], A[2], A[3], A[4], A[5], A[6], A[7], W[i+0], K[i+0] );         P( A[7], A[0], A[1], A[2], A[3], A[4], A[5], A[6], W[i+1], K[i+1] );         P( A[6], A[7], A[0], A[1], A[2], A[3], A[4], A[5], W[i+2], K[i+2] );         P( A[5], A[6], A[7], A[0], A[1], A[2], A[3], A[4], W[i+3], K[i+3] );         P( A[4], A[5], A[6], A[7], A[0], A[1], A[2], A[3], W[i+4], K[i+4] );         P( A[3], A[4], 
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!