卷积神经网络反向传播理论推导

匿名 (未验证) 提交于 2019-12-02 23:34:01

本文首先简单介绍CNN的结构,并不作详细介绍,本文只要讲解CNN的反向传播,CNN的反向传播,其实并不是大多所说的和全连接的BP类似,CNN的全连接部分的BP是与它相同,但是CNN中卷积--池化、池化--卷积部分的BP是不一样的,仔细推导,还是有很多细节地方需要思考的,比如1、在前向传播的过程中,卷积层的输入,是通过卷积核与前一层的输出特征图卷积得来的,那么在反向传播的过程中该怎么处理?这个就与全连接神经网络不同了。2、由于在前向传播的时候,池化层会对前一层卷积层进行放缩,那么从池化层到卷积层BP的时候,小尺度的池化层怎么把误差反传到大尺度的卷积层(这里的大小是一般而言,卷积层一张特征图经池化之后尺度会变小)?这个就与全连接神经网络完全不同!3、公式推导中,或者某些库的函数实现过程中,卷积核为什么要翻转180度?ps.本文是根据汇报的PPT更改,里面有很多图和文字就直接截图了,里面的每一个公式都是我和F.Tao讨论和推导过的,如有错误欢迎指正。

如果你觉得这篇文章看起来稍微还有些吃力,或者想要系统地学习人工智能,那么推荐你去看床长人工智能教程。非常棒的大神之作,教程不仅通俗易懂,而且很风趣幽默。点击这里可以查看教程。








3D CNN,为了更加详细说明每一层是什么,每一层那个是特征图,那些是神经元。




前向传播:

1、输入层到卷积层的前向传播
输入层到卷积层,采用的是局部连接,参数共享,卷积操作的方式,进行计算的,有个最好的说明就是cs231n笔记中的gif图,现展示如下:




2、卷积层到池化层的前向传播:













参考:
文章来源: https://blog.csdn.net/qq_45073156/article/details/90321103
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!